Key Definitions: Sections 2.1-2.4

- The identity matrix I_n is

- A diagonal matrix is

- A zero matrix is

- The transpose of a matrix A is

- An elementary matrix is

- A partitioned or block matrix A is
Major Theorems: Sections 2.1-2.4

Section 2.1

<table>
<thead>
<tr>
<th>Theorem 1 Properties of Matrix Addition and Scalar Multiplication Let A, B, and C be matrices of the same size, $m \times n$, and let r and s be scalars.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) $A + B =$</td>
</tr>
<tr>
<td>(b) $(A + B) + C =$</td>
</tr>
<tr>
<td>(c) $A + 0 =$</td>
</tr>
<tr>
<td>(d) $r(A + B) =$</td>
</tr>
<tr>
<td>(e) $(r + s)A =$</td>
</tr>
<tr>
<td>(f) $r(sA) =$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem 2 Properties of Matrix Multiplication Let $A, B,$ and C be matrices and r be a scalar such that the sums and products below are defined. Then,</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) $A(BC) =$</td>
</tr>
<tr>
<td>(b) $A(B + C) =$</td>
</tr>
<tr>
<td>(c) $(B + C)A =$</td>
</tr>
<tr>
<td>(d) $r(AB) =$</td>
</tr>
<tr>
<td>(e) $I_mA =$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem 3 Transpose Properties Let A and B be matrices whose sizes are appropriate for the following sums and products.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) $(A^T)^T =$</td>
</tr>
<tr>
<td>(b) $(A + B)^T =$</td>
</tr>
<tr>
<td>(c) For any scalar r, $(rA)^T =$</td>
</tr>
<tr>
<td>(d) $(AB)^T =$</td>
</tr>
</tbody>
</table>

Note: The transpose of a product of matrices equals the product of their transposes in reverse order.
Theorem 4 2 × 2 Inverses Let \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \). If \(ad - bc \neq 0 \), then \(A \) is invertible, and

\[
A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.
\]

If \(ad - bc = 0 \), then \(A \) is not invertible (is singular).

The quantity \(ad - bc \) is called the \textbf{determinant} of \(A \).

Thus, a 2 × 2 matrix is invertible if and only if \(\det A \neq 0 \).

Theorem 5 Matrix Equation Solutions and Inverses If \(A \) is an invertible \(n \times n \) matrix, then for each \(b \in \mathbb{R}^n \), the equation \(Ax = b \) has the unique solution, \(x = A^{-1}b \).

Theorem 6 Properties of Inverses

(a) If \(A \) is an invertible matrix, then \(A^{-1} \) is invertible and

\[
(A^{-1})^{-1} = \quad \quad
\]

(b) If \(A \) and \(B \) are \(n \times n \) invertible matrices, then \(AB \) is also invertible. The inverse of \(AB \) is the product of the inverses of \(A \) and \(B \) in reverse order. That is,

\[
(AB)^{-1} = \quad \quad
\]

(c) If \(A \) is an invertible matrix, then \(A^T \) is also invertible. The inverse of \(A^T \) is the transpose of \(A^{-1} \). That is,

\[
(A^T)^{-1} = \quad \quad
\]

Theorem 7 An \(n \times n \) matrix \(A \) is invertible if and only if \(A \) is row equivalent to \(I_n \), and in this case, any sequence of elementary row operations that reduces \(A \) to \(I_n \) also transforms \(I_n \) to \(A^{-1} \).
Theorem 8 The Invertible Matrix Theorem Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.

(a) A is an invertible matrix.
(b) A is row equivalent to the $n \times n$ matrix.
(c) A has _______ pivots.
(d) The equation $Ax = 0$ has only the _______ solution.
(e) The columns of A form a linearly _______ set.
(f) The linear transformation $x \mapsto Ax$ is _______.
(g) The equation $Ax = b$ has _______ solution for each b in \mathbb{R}^n.
(h) The columns of A _______ \mathbb{R}^n.
(i) The linear transformation $x \mapsto Ax$ maps \mathbb{R}^n _______ \mathbb{R}^n.
(j) There is an $n \times n$ matrix C such that $CA = _______.$
(k) There is an $n \times n$ matrix D such that $AD = _______.$
(l) A^T is an _______ matrix.

Theorem 9 Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then, T is invertible if and only if A is an invertible matrix, and the linear transformation S given by $S(x) = A^{-1}x$ is the unique function such that

\begin{align*}
 A^{-1}(Ax) &= S(T(x)) = x \text{ for all } x \in \mathbb{R}^n \\
 A(A^{-1}x) &= T(S(x)) = x \text{ for all } x \in \mathbb{R}^n
\end{align*}

where $S = T^{-1}$ is the inverse of T.
Supplemental Practice Problems:

1. Compute the inverse of \(A = \begin{bmatrix} 1 & 0 & 5 \\ 4 & 2 & 20 \\ 0 & 4 & -5 \end{bmatrix} \) using the inverse algorithm, \([A \ I] \sim \begin{bmatrix} I & A^{-1} \end{bmatrix}\).

2. Find the inverse of the following matrices:

 (a) \(\begin{bmatrix} -1 & 2 & 2 \\ 2 & -4 & -3 \\ -1 & 1 & 4 \end{bmatrix} \)

 (b) \(\begin{bmatrix} 5 & 5 & 2 \\ 4 & 5 & 2 \\ -2 & 1 & 0 \end{bmatrix} \)

3. Consider the matrix \(A = \begin{bmatrix} 2 & 3 & 1 \\ -2 & 5 & 2 \\ 0 & 3 & 1 \end{bmatrix} \)

 (a) Show that \(A^{-1} = \begin{bmatrix} 1/2 & 0 & -1/2 \\ -1 & -1 & 3 \\ 3 & 3 & -8 \end{bmatrix} \).

 (b) Using matrix \(A \) or \(A^{-1} \), determine the number of pivots of \(A \) and whether the columns of \(A \) are linearly independent or dependent.

4. Suppose that an \(n \times n \) matrix has a column which is a multiple of another column. Either give an example of an invertible matrix of this type or explain why such a matrix is not invertible.

5. Consider the following matrices

 \(A = \begin{bmatrix} 2 & -1 & 4 \\ -3 & 2 & 1 \end{bmatrix} \), \(B = \begin{bmatrix} 1 & -2 \\ 2 & 5 \\ 3 & 3 \end{bmatrix} \), \(C = \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix} \).

 Calculate (if possible) each of the following matrix products:

 (a) \(AB = \begin{bmatrix} 12 & 3 \\ 4 & 19 \end{bmatrix} \)

 (b) \(BA = \begin{bmatrix} 8 & -4 & 2 \\ -11 & 8 & 13 \\ -3 & 3 & 15 \end{bmatrix} \)

 (c) \(AC \) DNE

 (d) \(CA = \begin{bmatrix} 19 & -12 & 3 \\ -11 & 7 & -1 \end{bmatrix} \)

 # cols of \(A \) \# rows of \(C \)

 \# cols of \(A \) \# rows of \(C \)
6. Let \(R \) be the rectangle with vertices \((-2, -1), (-2, 2), (3, 2), (3, -1)\). Consider the linear transformation \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) given by \(T(x_1, x_2) = (4x_1 - 3x_2, -x_1 + x_2) \).

(a) Find the standard matrix \(A \) of the linear transformation \(T \), and sketch the image of the rectangle \(R \) under \(T \).

(b) Find the standard matrix \(A^{-1} \) corresponding to the inverse of \(T \) and sketch the image of the rectangle \(R \) under \(T^{-1} \).

7. Let \(R \) be the rectangle with vertices \((-2, -1), (-2, 2), (3, 2), (3, -1)\). Consider the linear transformation \(S : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) which maps the unit square to the parallelogram pictured below.

(a) Find the standard matrix \(B \) associated to \(S \) and sketch the image of the rectangle \(R \) under \(S \).

(b) Find the matrix \(B^{-1} \) associated to the inverse of \(S \) and sketch the image of the rectangle \(R \) under \(S^{-1} \).

8. Consider the matrices \(A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix} \) and \(B = \begin{bmatrix} 1 & b \\ c & -1 \end{bmatrix} \) where \(b \) and \(c \) are unknowns. Find values of \(b \) and \(c \) such that \(AB = BA \).

9. Given \(\begin{bmatrix} A & B \\ 0 & I \end{bmatrix} \begin{bmatrix} X & Y \\ Z & I \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} \). Find formulas for \(X \), \(Y \) and \(Z \) in terms of \(A \), \(B \) and \(C \).

Justify your calculations. That is, in some cases, you may need to make assumptions about the size of a matrix in order to produce a formula.

10. Let \(A = \begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix} \) where \(B \) and \(C \) are square blocks. Show that \(A \) is invertible if and only if both \(B \) and \(C \) are invertible.

\[
(\Rightarrow) \text{ Assume } A^{-1} \text{ exists. Let } A^{-1} = \begin{bmatrix} E & F \\ G & H \end{bmatrix} \text{ and we know } AA^{-1} = I.

\begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}
\]
$1. \ BE = I \quad 2. \ CH = I \quad 3. \ BF = 0 \ \Rightarrow \ EF = 0$

$\Rightarrow \ E = B^{-1} \quad \Rightarrow \ H = C^{-1} \quad 4. \ CG = 0 \quad G = 0$

(\Leftarrow) Assume B^{-1}, C^{-1} exists. Hence A^{-1} exists. Let $D = \begin{bmatrix} B^{-1} & 0 \\ 0 & C^{-1} \end{bmatrix}$.

$AD = \begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix} \begin{bmatrix} B^{-1} & 0 \\ 0 & C^{-1} \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} = I$

$\Rightarrow D = A^{-1}$

Problem 6

$(-3, -1) \quad (-2, 2) \quad (3, 2) \quad (3, -1)$

$T(x_1, x_2) = (4x_1 - 3x_2, -x_1 + x_2)$

(a) $T(-2, -1) = (4(-2) - 3(-1), 2 + 1)$

$= (-5, 1)$

$T(-2, 2) = (-8 - 6, 2 + 2) = (-14, 4)$

$T(3, 2) = (12 - 6, -3 + 2) = (6, -1)$

$T(3, -1) = (12 + 3, -3 - 1) = (15, -4)$

$T\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4x_1 - 3x_2 \\ -x_1 + x_2 \end{bmatrix} = x_1 \begin{bmatrix} 4 \\ -1 \end{bmatrix} + x_2 \begin{bmatrix} -3 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
(c) \[A = \begin{bmatrix} 4 & -3 \\ -1 & 1 \end{bmatrix} \Rightarrow A^{-1} = \frac{1}{4-3} \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \]

\[A^{-1} \begin{bmatrix} 15 \\ -4 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 15 \\ -4 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} \]

\[A^{-1} \begin{bmatrix} -6 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} -6 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \] etc. we'll undo

T by multiplying all the pts in the transformed quadrilateral by \(A^{-1} \), and get back to original pts.

#8) \[\begin{bmatrix} 3+5c & 3b-5 \\ 1+2c & b-2 \end{bmatrix} = \begin{bmatrix} 3+10 & 5+2b \\ 3c-1 & 5c-2 \end{bmatrix} \]

1. \[3+5c = 3+10 \]
 \[5c = 10 \]
 \[c = 2 \]

2. \[3b-5 = 5+2b \]
 \[b = 10 \]

3. \[1+2c = 3c-1 \]
 \[2c = -2 \]
 \[c = -1 \]

4. \[b-2 = 5c-2 \]
 \[b = 5c \]
 \[b = 5 \]
 \[b = 10 \]
 \[10-2 = 5(2)-2 \] check

\[B = \begin{bmatrix} 1 & 10 \\ 2 & -1 \end{bmatrix} \]
\[
\begin{bmatrix}
A & B \\
0 & I
\end{bmatrix}
\begin{bmatrix}
x & y \\
0 & I
\end{bmatrix} =
\begin{bmatrix}
I & 0 \\
0 & I
\end{bmatrix}
\]

\[
\begin{bmatrix}
Ax & Ay & A^2+B \\
0 & 0 & I
\end{bmatrix} =
\begin{bmatrix}
I & 0 & 0 \\
0 & 0 & I
\end{bmatrix}
\]

\[
\Rightarrow Ax = I
\]

\[
\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = A^{-1}
\]

\[
A^2 = -B
\]

\[
A^2 + B = 0
\]

\[
A^2 = -B
\]

\[
\begin{bmatrix} x \\ y \end{bmatrix} = A^{-1}
\]

(Since \(A^2 = 0 \))

and \(A^{-1} \) exists

we had to assume \(A \) is square and \(A^{-1} \) exists.