
9.1 Infinite Sequences

Ex 1: Write the first four terms and determine if 
the sequence { an} converges or diverges given

an=(2n )1 /2n

A sequence { an} converges if
lim
n→∞

an= finite number . Otherwise, { an}

diverges. 
(In other words, the limit could be some sort of 
infinity or the limit could not exist and the 
sequence would diverge.)

Ex 2: Determine if the sequence { an} converges or diverges.

(a) an=2+(0.99)n

(b) an=(1−1
4 )(1−1

9 )⋅ ⋅ ⋅(1− 1

n2 ) , for n≥2
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9.1 (continued)

Ex 3: Find an explicit formula for an . Determine if { an} converges or diverges. (Hint: first decide
which n-value you will start with and then make a table of values.)

(a) 1−1
2

 , 
1
2
−1

3
 , 

1
3
−1

4
 , 

1
4
−1

5
 , ... (b) −1 , 

2
3

 , −3
5

 , 
4
7

 , −5
9

 , ...

Ex 4: Find an explicit formula for an . Determine if { an} converges or diverges. 

a1=1 , an+1=1+1
2

an  , n=2, 3, 4,...
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9.2 Infinite Series 

Ex 1: Determine if these series converge or 
diverge.

(a) ∑
n=1

∞ 5n+1

8n−1

Assuming ∑
n=1

∞

an is a positive series (meaning 

that each of the an terms are positive), you can 
use these tests to determine convergence or 
divergence of the series.

(1) nth term test for DIVERGENCE:

If lim
n→∞

an≠0 , then ∑
n=1

∞

an diverges.

(2) Geometric Series:

For series of the form ∑
n=k

∞

ar n where k and a are 

constants,

∑
n=k

∞

ar n=first term
1−r

    if ∣r∣<1 . Otherwise

∑
n=k

∞

ar n diverges if ∣r∣≥1 .

(And, first term = the term in the series when you 
plug in the first value of n, i.e. a rk .)

(b) ∑
n=3

∞ 2n+1
2n−3

Note:

The infinite sum operator ∑
n=1

∞

 is a linear 

operator only on convergent positive series!!!!!

That is, 

(a) ∑
n=1

∞

(an+bn)=∑
n=1

∞

an+∑
n=1

∞

bn and

(b) ∑
n=1

∞

c an=c∑
n=1

∞

an (where c is a constant) IF 

both ∑
n=1

∞

an and ∑
n=1

∞

bn are convergent positive

series.

In other words, we can distribute the infinite 
summation ONLY when we already know the 
series are each convergent.
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9.2 (continued)

Ex 2: Write 0.1256565656... as an infinite series and then as a simplified fraction, using the series.

Ex 3: Do these series converge or diverge? Explain your answer.

(a) ∑
n=1

∞ (2 (3
5 )

n

+500( 1
2 )

n

) (b) ∑
n=1

∞

n2sin( 1

n2 )
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9.3 Positive Series Tests

Ex 1: Do these series converge or diverge?

(a) ∑
n=1

∞

n3 e−3n4

Positive Series Tests:

Assuming ∑
n=1

∞

an is a positive series.

(1) nth term test for DIVERGENCE:

If lim
n→∞

an≠0 , then ∑
n=1

∞

an diverges.

(2) Geometric Series:

For series of the form ∑
n=k

∞

ar n where k and a are 

constants,

∑
n=k

∞

ar n=first term
1−r

    if ∣r∣<1 . Otherwise

∑
n=k

∞

ar n diverges if ∣r∣≥1 .

(3) p-series:

∑
n=1

∞ 1

n p    {converges, if p>1
diverges, if p≤1

(b) ∑
n=2

∞

( 1

n5/3+
1

3n ) (7) Integral Test:
If f is a (a) continuous, (b) positive, and (c) non-

increasing function on [ k ,∞ ) , then ∑
n= k

∞

an

converges iff ∫
k

∞

f ( x)dx where an= f (n) .

(8) Argument by Partial Sums:

If S p=∑
n=1

p

an and lim
p→∞

S p=S<∞ , then

∑
n=1

∞

an converges to S. Otherwise, if lim
p→∞

S p

either DNE or goes to some sort of infinity, then

∑
n=1

∞

an diverges.

Note: This is the order of tests I prefer. The other 
tests will be filled in later.
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9.3 (continued)

Ex 2: Determine if these series converge or diverge. And, if they converge, find their sum.

(a) ∑
n=4

∞

( 1
n−1

− 1
n−3 )

(b) ∑
n=5

∞ (4(5
2 )

−n

+5(1
3 )

2n

)
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9.3 (continued)

Ex 3: Show that ∑
n=3

∞

ln( n
n+1) diverges.

Ex 4: Rewrite this as a p-series and determine if this series converges or diverges.

∑
n=9

∞ 4
(n+3)2
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9.4 Positive Series: More Tests 

Ex 1: Determine if these series converge or 
diverge.

(a) ∑
n=1

∞ √3n+1
2n 2−1

Positive Series Tests:

Assuming ∑
n=1

∞

an is a positive series.

(4) LCT (Limit Comparison Test):

If an≥0  , bn≥0 and lim
n→∞

an

bn

=L and if

0<L<∞  , then ∑
n=1

∞

an and ∑
n=1

∞

bn converge 

or diverge together. 

If L = 0 AND ∑
n=1

∞

bn converges, then ∑
n=1

∞

an

converges.
Otherwise, there is no conclusion.

(Note: ∑
n=1

∞

an refers to the series that we are 

given, ∑
n=1

∞

bn is a series we CHOOSE to 

compare our given series to. With this test, you 

always have to choose ∑
n=1

∞

bn on your own. 

Typically, we choose p-series since we know 
everything about them.)

(b) ∑
n=1

∞ n10+1
3n (5) RT (Ratio Test):

lim
n→∞

an+1

an

=ρ    { if ρ<1, the series converges
if ρ>1, the series diverges

if ρ=1, there's no conclusion
(If there is no conclusion, it means you have to try
a different test until you get a conclusion.)

(6) OCT (Ordinary Comparison Test):
If 0≤an≤bn  for n≥N (for some finite N 
value), then:

∑
n=1

∞

bn converges ⇒ ∑
n=1

∞

an converges

∑
n=1

∞

an diverges  ⇒ ∑
n=1

∞

bn diverges

Note: This is the order of tests I prefer. The other 
tests are given on a previous page, from the last 
section of notes.
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9.4 (continued)

Ex 2: Determine if these series converge or diverge.

(a) ∑
n=1

∞ 2n

n1000
(b) ∑

n=1

∞ 1

5+cos2 n

(c) 
ln 2
4

+ ln 3
9

+ ln 4
16

+... (d) 1+ 2

9 4√3
+ 3

25 4√5
+ 4

49 4√7
+...
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9.4 (continued)

Ex 3: Determine if these series converge or diverge.

(a) ∑
n=1

∞ nn

(2n )!
(b) ∑

n=1

∞

(1− 2
n)

5n

(c) ∑
n=1

∞ 10n+n10

(2n )!
(d) ∑

n=1

∞

n(1
5 )

n
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9.5 Alternating Series

Ex 1: Do these series converge absolutely, 
converge conditionally or diverge?

(a) ∑
n=1

∞ (−1)n+1 3n−1

n!

Important Note:
Now we need to test for convergence differently. 

Remember that ALL the tests given so far are only
for positive series. So you can use any of those 
tests to test for absolute convergence. You do this 
by doing any positive series test (the one that 
makes the most sense) on the series of terms in 
absolute value.

If a series does not converge absolutely (i.e. the 
series of terms in absolute value diverges by one 
of the positive series tests), then 
(a) if it's an all-positive series, then you're done, it 
diverges.
(b) if it's an alternating series, try the AST to see if
it converges conditionally. 

In other words, if you're given the series ∑
n=1

∞

cn ,

then test for absolute convergence on the 

corresponding series ∑
n=1

∞

∣cn∣ .

(b) ∑
n=1

∞ cos(nπ)
n AST (Alternating Series Test):

If we have an alternating series, ∑
n=1

∞

(−1)n an , 

where an>0  for all n and if { an} is 

decreasing and lim
n→∞

an=0 , then ∑
n=1

∞

(−1)n an

converges (at least conditionally).

Another Note: If you have an alternating series 
and you do the AST first and find conditional 
convergence, you STILL have to test for absolute 
convergence before you can make your final 
conclusion.
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9.5 (continued)
ART (Absolute Ratio Test):
This test is exactly the RT except you put absolute 
values on the term you're taking the limit of.

Ex 2: Determine if these series converge absolutely, converge conditionally, or diverge.

(a) ∑
n=1

∞ (−1)n n

2n1.01+10
(b) ∑

n=1

∞ (−5)n n3

8n

(c) 1− 52

2 !
+ 54

4 !
− 56

6 !
+.... (d) ∑

n=1

∞

nsin ( 1
n )

12



9.3-9.5 Notes on Error Bounds

Ex 1: How large should p be so that S p

approximates S=∑
n=1

∞ 1
n9/8  with error no bigger 

than 0.001?

For any convergent series, we can write it as 

S=∑
n=1

∞

an=S p+E p=∑
n=1

p

an+ ∑
n= p+1

∞

an where 

S p=∑
n=1

p

an and E p= ∑
n=p+1

∞

an  , and use S p

(the pth partial sum) to approximate the real sum 
of the infinite series. But there is an error to pay 
for that approximation. These are ways to bound 
that error, E p .

(1) For an all positive series, ∑
n=1

∞

an ,

E p= ∑
n=p+1

∞

an<∫
p

∞

f ( x)dx where

f (n)=an∀n=1, 2,3, ... and ∫
p

∞

f ( x)dx

converges.
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9.3-9.5 (Error bounds continued)

Ex 2: (a) Estimate the error made by using S 10

as an approximation to ∑
n=2

∞ (−1)n+1 2n

n2−1

(2) For an alternating series, ∑
n=1

∞

(−1)n an ,

∣E p∣=∣ ∑
n= p+1

∞

(−1)n an∣≤a p+1 . 

Notice that the way this alternating series is 
written, we are assuming all the an terms are 
positive.

(b) What if we want to ensure an error of 0.001, 
then what must p be? (That is, if we want

E p≤0.001 , what must p be?)

(c) And what might that tell you about the rate of 
convergence for this series?
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9.6 Power Series

Ex 1: Find the convergence set for the series

∑
n=2

∞ (2x−1)n

(n+1)!

Power Series:
It is a function of x. Now the sum has two 
variables, one is the summation variable (usually 
n) and the other is a different variable (usually x).

∑
n=0

∞

an xn=a0+a1 x+a2 x2+a3 x3+...

A power series is basically an infinite-degree 
polynomial in x.

This series converges in one of the following 
ways:
(a) converges at x = 0.
OR
(b) converges on (-R, R) (or [-R, R) or (-R, R] or 
[-R, R] ) (Notice that the center point for all of 
these intervals is x = 0.)
OR
(c) all real numbers (i.e. (−∞ ,∞) ).

To find the convergence set, you always do these 
steps:
(1) Use ART and force convergence to see what 
x-values make that true (i.e. do ART and force the
limit result to be < 1 and then solve for the x-
interval using algebra).

And, then
(2) Check the endpoints. By this I mean you need 
to separately, plug in each of the x-values that are 
the endpoints of the interval of convergence that 
you got in part (1). Then, use appropriate tests on 
those infinite series of numbers to see if those 
series converge or diverge. 

What does convergence mean?
(i) For an infinite series of numbers to converge, it
means their sum adds to something finite.

(ii) For a power series to converge, it means that 
the infinite-degree polynomial exactly matches the
function of x on that interval of convergence.
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9.6 (continued)

Ex 2: For each of these power series, find the convergence set and the radius of convergence, R.

(a) x+4x2+9x3+16x4+...

(b) ( x+3)−2( x+3)2+3(x+3)3−4(x+3)4+...
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9.6 (continued)

Ex 3: For each of these power series, find the convergence set and the radius of convergence, R.

(a) 
x
3
+ x2

8
+ x3

15
+ x4

24
+...

(b) ∑
n=1

∞ (−1)n(2x−3)n

4n√n
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9.7 Operations on Power Series

Ex 1: Find the power series for f(x), along with its
radius of convergence.

(a) f (x )= 2x3

1−x 4

If f (x )=∑
n=0

∞

an xn converges on the interval I, 

then f ' ( x )=∑
n=1

∞

nan xn−1 and

∫
0

x

f (t )dt=∑
n=0

∞ an xn+1

n+1
also converge on the 

interior of I.

(b) f (x )=e3x+3x2−5 Power Series to have on your note card:
(along with their convergence sets)

(1) 
1

1− x
=∑

n=0

∞

x n    ∀ x∈(−1,1)

(2) ln (1+ x)=∑
n=1

∞ (−1)n+1 xn

n
   ∀ x∈(−1,1)

(3) arctan x=∑
n=1

∞ (−1)n+1 x 2n−1

2n−1
   ∀ x∈[−1,1 ]

(4) ex=∑
n=0

∞ x n

n!
      ∀ x∈ℝ
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9.7 (continued)

Ex 2: Find the power series for f(x), along with its radius of convergence.

(a) f (x )=∫
0

x
arctan t

t
dt (b) f (x )= x

x2−3x+2
(Hint: Use PFD.)
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9.7 (continued)

Ex 3: Find the sum of ∑
n=1

∞

n xn , i.e. find the function that this power series represents, and on what 

interval.
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9.8 Taylor and Maclaurin Series

Ex 1: Find the Taylor Series for the following 
function, given the center value and state the 
radius of convergence. f (x )=e x  , a=2

Taylor's Theorem:

Assume f (x ) is a function with derivatives of 
all orders in some interval (a−R , a+R)
The Taylor Series for f (x )  is given by

f (x )= f (a)+ f ' (a)( x−a)+ f ' ' (a)
2 !

(x−a)2

+
f ' ' ' (a)

3!
( x−a )3+...

on (a−R , a+R) where R is the radius of 
convergence,

iff

lim
n→∞

Rn(x )=0 , i.e. the remainder goes to zero, 

where the remainder is given by

Rn(x )=
f (n+1)(c )
(n+1)!

( x−a)n+1 for some

c∈(a−R , a+R) . 

Remember that a Maclaurin series is just a Taylor 
Series with a = 0, i.e. the center value is 0.

Taylor's Formula with Remainder:

Assume f (x ) is a function with at least (n+1) 
derivatives existing for each x in an open interval, 
I, containing a. Then, for each x in that interval, I, 

f (x )= f (a)+ f ' (a)( x−a)+ f ' ' (a)
2 !

(x−a)2

+...+
f (n)(a)

n!
( x−a)n+Rn(x )

where the remainder (or error) Rn( x) is given 

by Rn(x )=
f (n+1)(c )
(n+1)!

( x−a)n+1 for some

c∈[min (a , x ) , max (a , x )] . 
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9.8 (continued)

Ex 2: Find the Taylor Series for the following 
functions, given the center value and state the 
radius of convergence.
(a) f (x )=sec x  , a=π

4
, out to the third degree

term

Power (Maclaurin) Series to have on your note 
card:

(5) sin x=∑
n=0

∞ (−1)n x2n+1

(2n+1)!
     ∀ x∈ℝ

(6) cos x=∑
n=0

∞ (−1)n x2n

(2n )!
     ∀ x∈ℝ

(7) sinh x=∑
n=0

∞ x 2n+1

(2n+1)!
     ∀ x∈ℝ

(8) cosh x=∑
n=0

∞ x2n

(2n )!
     ∀ x∈ℝ

                                                                               

(b) f (x )= 1
1−x

 , a=3
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9.8 (continued)

Ex 3: Find the Taylor Series for the following functions, given the center value and state the radius of 
convergence.

f (x )=x (sin (2x )+sin (3x))  , a=0

Ex 4: Given f (x )={ 0  ,  x<0
x4   ,  x≥0

, explain why we cannot use Maclaurin series, where a=0 , to 

represent this function. Can we use a different Taylor Series (centered somewhere other than 0)? 
Why?
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9.9 Taylor Approximation to a Function

Some new algebra practice first for error bounds.

Ex 1: Find a good bound for the max value of 
these given expressions.

(a) ∣c2+sin c
10 ln c ∣ on the interval [2,4]

Note: An error bound is just an upper bound on 
the worst case scenario of how off your estimate 
can be. 

For example of an upper bound, I could say that 
my age is less than 200 years. This is an upper 
bound because surely I'm not more than 200 years 
old. However, it's a terrible upper bound because 
it doesn't give you a decent estimate of my actual 
age and it doesn't even make sense since most 
people don't live to be 200 years old. If I said that 
an upper bound for my age is 70, then I'm 
guaranteeing that I'm not older than 70 years, but 
it doesn't tell you how close I am to 70 years old. 
However, it's a MUCH better upper bound on my 
age than 200. 

(b) ∣tan c+sec c∣  on the interval [0, π
3

]

24



9.9 (continued)

Ex 2: Find a Taylor polynomial of order 3 based 
at a for the following functions.
(a) f (x )=√x  , a=2

Ex 3: Use the Taylor polynomials in Ex 2 to (i) 
find the formula for R3(x ) , at any x-value, and
(ii) find a good upper bound for ∣R3(x )∣ for the 
given x-values.
(a) x = 1 and x = 3

(b) f (x )=2x  , a=1 (b) x = 0 and x = 2
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9.9 (continued)

Ex 4: Find (i) a formula for R6(x ) for any x-value and (ii) find a good upper bound for ∣R6(x )∣ for
the given x-value.

(a) f (x )= 1
x2  , a=1 , at x=1

2
(b) f (x )= 1

x2  , a=1 , at x=5

(c) f (x )= 2
x−3

 , a=1 , at x=0 (d) f (x )= 2
x−3

 , a=1 , at x=2
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