8.1 Real Numbers

$$
R
$$

The set of Real Numbers, denoted by $\mathbf{R}$, is the union of the rational numbers and irrational numbers.

In decimal form, irrational numbers
are nonterminating and nom-repeating.
Examples:

$$
\begin{aligned}
& \pm \pi, \pm \sqrt{2}, \pm \sqrt{5}, \pm \sqrt{\pi}, \sqrt{\text { any prime \# }}, \sqrt[3]{\text { any prime\# }}, \\
& \pm \sqrt[4]{5},-1.20200200020000 . .
\end{aligned}
$$

Properties of Real Numbers (for addition and multiplication)

1. Closure
(closed also under subtraction)
2. Commutativity \& Associativity

$$
\begin{array}{c|c}
a+b=b+a & a+(b+c)=(a+b)+c \\
a b=b a & a(b c)=(a b) c
\end{array}
$$

3. Distributivity

$$
a(b \pm c)=a b \pm a c
$$

4. Identities

1,0 are in this set
5. Inverses
if $a \in \mathbb{R}$, then $\frac{1}{a}$ and $-a \in \mathbb{R}$, where $\frac{1}{a}$ makes sense.
6. Denseness
between any two $\mathbb{R} \# s$, there are in countably infinitely many other $\mathbb{R} \# s$.

What properties does the set of irrational numbers have?

Prove that there are infinitely many primes.
(Proof by contradiction)
Pf Assume there are finitely many primes. Let's say there are $n$ of them. Call them

$$
P_{1}, P_{2}, \ldots, P_{n-1}, P_{n}
$$

Then create this number

$$
P=p_{1} \cdot p_{2} \cdot p_{3} \cdots p_{n}+1 . \text { Notice } p>p_{n} \text {. }
$$

Since $p_{n}$ is the biggest prime $\#$ and $p>p_{n}$, then $p$ is composite.
Then we should bs able to factor $p$ into prime factors.

But $p_{1} \cdot p_{2} \cdots p_{n}$ and I have no common prime factors $\Rightarrow$ we have a contradiction.
$\Rightarrow$ our original assumpth is wrong
$\Rightarrow$ there are infinitely many primes.

Prove that $\sqrt{2}$ is irrational.
If (Pf by contradiction)
Assume $\sqrt{2}$ is rational.
Then $\sqrt{2}=\frac{a}{b}$ for some $a, b \in W, b \neq 0$,

$$
\begin{aligned}
\operatorname{GCF}(a, b)=1 . \quad \sqrt{2}=\frac{a}{b} & \Leftrightarrow \sqrt{2} b=a \\
& \Leftrightarrow 2 b^{2}=a^{2}
\end{aligned}
$$

Use Fundamental The of Arithmetic.
So, the prime factorization of $2 b^{2}$ and $a^{2}$ is the same.
but $a^{2}$ has an even $H$ of prime factors and $2 b^{2}$ " "odd " " "
$\Rightarrow 2 b^{2}$ cannot equal $a^{2} \Rightarrow$ we have a contradiction $\Rightarrow \sqrt{2}$ is irrational.

Draw Venn Diagram for all the sets of numbers considered this semester (N, W, Z, Q, R and irrationals (I)).



Fractional Exponents
ex
$a^{1 / n}=\sqrt[n]{a}$

$$
\begin{array}{l|r}
x^{3}=8 & \begin{array}{c}
x^{3}=8 \\
\left(x^{3}\right)^{1 / 3}=8^{1 / 3} \\
x=8^{1 / 3}=\left(2^{3}\right)^{1 / 3}=2 \\
\sqrt[3]{x^{3}=\sqrt[3]{8}} \\
x=2
\end{array} \\
\begin{array}{l}
x=2
\end{array} \\
\text { exponents and roots/radicals }
\end{array}
$$

ie. we can convert between rational exponents and roots/radicals

$$
a^{2 / n}=\left(a^{2}\right)^{1 / n}=\left(a^{1 / n}\right)^{2}
$$

ex $\quad a^{2 / n}=\sqrt[n]{a^{2}}=(\sqrt[n]{a})^{2}$
Examples: Simplify these expressions.
(a) $\sqrt[4]{81}=\sqrt[4]{3^{4}}=3$

$$
\begin{aligned}
\sqrt[4]{81}=\sqrt[4]{9^{2}} & =q^{2 / 4}=9^{1 / 2} \\
& =\sqrt{9}=3
\end{aligned}
$$

(b) $\sqrt[3]{\frac{1}{-125}}=\frac{\sqrt[3]{1}}{\sqrt[3]{-125}}=\frac{1}{-5}$
(c)

$$
(-27)^{-4 / 3}=\frac{1}{(-27)^{4 / 3}}=\frac{1}{(\sqrt[3]{-27})^{4}}=\frac{1}{(-3)^{4}}
$$

$$
=\frac{1}{81}
$$

(d)

$$
=(\sqrt{9})^{3}=3^{3}=27
$$

$$
\begin{aligned}
\frac{1}{(-27)^{4 / 3}} & =\frac{1}{(-27)^{\prime}(-27)^{1 / 3}} \\
& =\frac{1}{-27(-3)}=\frac{1}{81}
\end{aligned}
$$

8. 1

$$
\begin{aligned}
& \left(\frac{4}{25}\right)^{-1 / 3},\left(\frac{25}{4}\right)^{1 / 3},\left(\frac{4}{25}\right)^{-1 / 4} \\
& \Rightarrow\left(\frac{25}{4}\right)^{1 / 3}=\left(\frac{25}{4}\right)^{1 / 3}>\left(\frac{25}{4}\right)^{1 / 4}
\end{aligned}
$$

B3) $0.8,0 . \overline{8}, 0 . \overline{89}, 0.8 \overline{89}, \sqrt{0.7744}=0.88$

$$
\begin{gathered}
0.8<0 . \overline{8}<0.8 \overline{89}<0 . \overline{89} \\
0.8<\sqrt{0.7744}<0 . \overline{8}<0.8 \overline{89}<0 . \overline{89}
\end{gathered}
$$

Pecinal
5) (a) 70\% off orig. price
(b) 50\% off orig. price, $+25 \%$ off
(a) pay: $\$ 30$
(b)

$$
\begin{aligned}
\text { Pay } & : 0.75(0.5(100)) \\
& =0.75(50)=\$ 37.50
\end{aligned}
$$

6) (a) $10 \%$ raise, then $10 \%$ cut
(b) 10\% (ut, then 10\% raise
(a) $1.1(100000)=\$ 110,000$

$$
0.9(110,000)=\$ 99,000
$$

(b)

$$
\begin{aligned}
& 0.9(100000)=\$ 90000 \\
& 1.1(90,000)=\$ 99,000
\end{aligned}
$$

Quiz 12
*) $65(29)=1885$
(1) bevn 1885, 1949-1885=64
(2) born 1914, 1949-1914 $=35$
(3) born 1943, 1949-1943=6
$7 \quad x=$ total catich
(c) expenses: $44,500+0.43 x$

$$
\begin{gathered}
44500+0.43 x=x \\
44500=0.57 x \\
x=\$ 78,070.18
\end{gathered}
$$

3) $x=$ orig.price

$$
\begin{aligned}
\text { pay } 0.7(0.8 x) & =487.20 \\
0.56 x & =487.20 \\
x & =\$ 870
\end{aligned}
$$

ex

$$
\begin{aligned}
& 1+2+3+4+\cdots+193+194=97 \text { (195) } \\
& =\frac{194(195)}{2} \\
& 2+193=195 \\
& 3+192=195 \\
& 1+2+\cdots+n=\frac{n(n+1)}{2} \\
& 97+98=195 \\
& 11+12+13+\cdots+217=103.5(228)
\end{aligned}
$$

1) $\left\{\begin{array}{c}11+217=228 \\ 12+216=228 \\ \vdots \\ 108+120=228 \\ \vdots \\ 112+116=228 \\ 113+115=228\end{array}\right.$

114

$$
\begin{aligned}
& 2^{4}(3)\left(5^{7}\right)+2^{4}\left(5^{6}\right)=2^{4}\left(5^{6}\right)[3 \cdot 5+1] \\
&=2^{4}\left(5^{6}\right)(16) \\
&=2^{4}\left(5^{6}\right) 2^{4} \\
&=2^{8}\left(5^{6}\right)=2^{2}\left(2^{6} \cdot 5^{6}\right)=2^{2}\left(10^{6}\right) \\
&=4,000,000
\end{aligned}
$$

$$
2 \frac{2}{3} \cdot \frac{3}{4}=\left(2+\frac{2}{3}\right) \frac{3}{4}=2\left(\frac{3}{4}\right)+\frac{2}{3}\left(\frac{3}{4}\right)
$$



$$
=\frac{9}{12}+\frac{9}{12}+\frac{6}{12}=\frac{24}{12}=2
$$

ex $\quad 1 \frac{2}{5} \cdot \frac{3}{4}$
Shave $1 \frac{2}{5} y d s$ of fabric. I have $1 \frac{2}{5} y d s$ of fabric.
$m_{y}$ kid is smaller than me Each pattern needs $\frac{3}{4} \mathrm{yd}$. + her dress requires $\frac{3}{4}$ How many patterns can I of the material. How much fabric will I use?

Model

$$
\begin{aligned}
& 136_{8} \div 6_{8} \\
& =17_{8} R 4_{8}
\end{aligned}
$$


convert $200 I_{s}$ to base 10 .

$$
2001_{5}=1(1)+0(5)+0(25)+2(125)=1+250=251
$$

Convert 2001 to base 5 .

$$
\begin{aligned}
& 625 \text { R25 } 25 \leq 1 \\
& \begin{array}{cc}
625 & 2001 \\
\times 3 & \\
\hline 1875 & \frac{-1875}{126}
\end{array} \\
& 2001=3(625)+1(125) \\
& +0(25)+0(5) \\
& +\mid(1) \\
& =310015
\end{aligned}
$$

ex find GCF $\&$ LCM for $135,21,1680$

ex convert $1 . 0 \longdiv { 2 3 }$ to a fraction.

$$
\begin{aligned}
10000 n & =10123 . \overline{123} \\
-10 n & =10.123 \\
\hline 9990 n & =10,113 \\
n & =\frac{10113}{9990}=\frac{3371}{3330}=\left(\frac{41}{3330}\right.
\end{aligned}
$$

