7.2/7.3 Operations on Decimals/Nonterminating Decimals

There are three types of decimals.

1. Terminating (\mathbb{Q}) ex -1.52
ends/terminates
2. Repeating, non-terminating (4) ex $0 . \overline{3}, 0.17 \overline{231}$ never ends, but repeats forever
 $0.1011011101111 . .$.

Which of these types are rational numbers? (1) and (2)

For the types) of decimals that are not rational, what do we call those numbers? irrational

Arithmetic with decimals
Examples:

1. $1.36475002+0.0007819$

$$
\begin{array}{r}
1.36475002 \\
+0.0007819 \\
\hline 1.36553192
\end{array}
$$

2. $1.36475002-0.0007819$

$$
\begin{array}{r}
1.36475002 \\
-0.0007819 \\
\hline 1.36396812
\end{array}
$$

3. $362.14(4.3)=\left[\frac{36,214}{100} \frac{(43)}{10}\right]=[36214(43)]\left(\frac{1}{100(10)}\right)$

$$
=36214(43)(0.001)
$$

$$
=1557.202
$$

$$
\begin{array}{r}
4.129 .31 \div 3.2=\left(\frac{12931}{100} \div \frac{32}{10}\right)=\frac{12931}{100} \cdot \frac{10}{32}=\frac{12931}{32}\left(\frac{1}{10}\right) \\
=40.409375
\end{array}
$$

$$
\begin{aligned}
& 42 \sqrt{404.09375} \\
& \frac{12931}{131} \\
& \frac{-128}{300} \\
& \frac{-288}{120} \\
& \frac{-96}{240} \\
& \frac{-224}{160}
\end{aligned}
$$

or $3 2 2 \longdiv { 1 2 9 . 3 1 }$

$$
\frac{129.31}{3.2}\left(\frac{10}{10}\right)=\frac{1293.1}{32}
$$

Express $0.111 \ldots$ as a fraction.

$$
\begin{aligned}
n & =0.111 \ldots \\
10 n & =1.111 \ldots \\
-n & =0.111 \ldots \\
\hline 9 n & =1 \Rightarrow n=1 / 9
\end{aligned}
$$

0.333.. $=$ all.... (3)

$$
\frac{1}{3}=0.111 \ldots(3)
$$

$$
\frac{1}{9}=0.111 . .
$$

How about 0.22222...? 0.33333....? 0.4444....?

$$
\begin{aligned}
& n=0.222 \ldots . \quad \begin{aligned}
10 n & =2.22 \ldots \\
10 n & =2.222 \ldots \quad n \\
9 n & =2.22 \ldots
\end{aligned} \\
& \hline 9 n
\end{aligned}
$$

Then, what's 0.9999.....?

$$
\begin{gathered}
n=2 / 9 \\
10_{n}=9.9 .9 \ldots \ldots \\
n=0.999 \ldots \\
\hline 9 n=9 \\
n=1
\end{gathered}
$$

Can we express $0.51515151 \ldots$. as a fraction? If so, what is its fraction form?

$$
\begin{array}{c|l}
n=0 . \overline{51}=51 / 99 & 0 . \overline{63}=63 / 99=\frac{21}{33} \\
100 n=51 . \overline{51} & =\frac{7}{11} \\
-\quad n=0 . \overline{51} & 0 . \overline{2}=12 / 99=\frac{4}{33} \\
\hline 99 n=51 \\
n=51 / 99 &
\end{array}
$$

More Examples:
Convert these repeating decimals to fractions (notice patterns).
5. $0.272727 \ldots=n=27 / 99$

$$
0.000 \overline{27}=\frac{27}{99000}
$$

6. $0.027272727 \ldots=n=\frac{27}{990}$

$$
\begin{aligned}
-10 n & =0.27 \\
990 n & =27
\end{aligned}
$$

$$
\begin{aligned}
& 0.000 \overline{27}=\frac{27}{99,000} \\
& 0.0 \overline{61}=\frac{61}{990} \\
& 0.000 \overline{61}=\frac{61}{99,000}
\end{aligned}
$$

7. $0.0 .02727272727 \ldots .{ }^{27}=\frac{27}{9900}$

$$
\begin{aligned}
-100 n & =0.27 \\
9900 n & =27 \\
8.0 .527272727 \ldots & =n
\end{aligned}
$$

8. $0.527272727 \ldots=n \quad n=\frac{522}{990}$

$$
\begin{aligned}
& 1000 n=527 . \overline{27} \\
& \frac{-10 n}{}=5.27 \\
& 990 n=522 \\
& 9.0 .327272727 \ldots=\frac{327-3}{990}=\frac{324}{990} \\
& 0.92727 \ldots=\frac{927.9}{990}
\end{aligned}
$$

$$
0.12727 \ldots
$$

$$
=\frac{126}{990}
$$

$0.0 \overline{35}=\frac{35}{990}$

$$
0.7 \overline{35}=\frac{728}{990}
$$

$0.2 \overline{35}=\frac{233}{990}$

Scientific Notation $y \times 10^{b}, 1 \leq y<10, b \in \mathbb{Z}$
Express these decimals in scientific notation.

$$
(\text { or }-10<y \leq-1)
$$

(a) 5678.0021

$$
=5.6780021 \times 10^{3}
$$

(b) $-0.00000000962=-9.62 \times 10^{-9}$

Express these numbers, given in scientific notation, as decimals.
(a) $3.456009 \times 10^{9}=3,456,009,000$
(b) $-8.7765 \times 10^{-4}=-0.00087765$

Order these decimals from smallest to largest. $\begin{aligned} & B 5.16161616 \ldots . . \\ & C 3.166666 \ldots \\ & D \\ & B .16161 \ldots\end{aligned}$

$$
\begin{aligned}
& =-5.16<-5.16 \\
& 5.16<5 . \overline{16}=516<5.1 \overline{6}<5.616
\end{aligned}
$$

7.2 A padtes
3) $25 \mathrm{lb} \mathrm{c}^{\text {paches }} \$ 4.00 / \mathrm{lb}, 15 \mathrm{lb}$ aptes $\mathrm{C} \$ 2.00 / \mathrm{lb}$
$10 \mathrm{lbs} e \$ x / \mathrm{eb}$ to have avg $\$ / e b$ of $\$ 3.50 / \mathrm{lb}$

$$
\begin{aligned}
\frac{25(4)+15(2)+10 x}{50} & =3.5 \\
\frac{130+10 x}{50} & =3.5 \\
130+10 x & =35(5) \\
130+10 x & =175 \\
10 x & =45 \\
x & =4.5
\end{aligned}
$$

$\$ 4.50 / \mathrm{lb}$

A24) $49,736.5281$
B13 purchased.

profit: $30889.14-28881.50$

$$
=
$$

7.3 A11) 0.4 halfuay

$$
\begin{aligned}
& \frac{0 . \overline{4}+0.5}{2}=\frac{4 / 9+1 / 2}{2}=\frac{\frac{8+9}{18}}{2}=\frac{17}{18} \div 2 \\
& \begin{aligned}
\frac{0.4+0.5}{2}=\frac{0.944}{2}=0.47 \overline{2} & =\frac{17}{18} \cdot \frac{1}{2}=\left(\frac{17}{36}\right) \\
& =\frac{1}{4}\left(\frac{17}{9}\right)=\frac{1}{4}(18) \\
& =0.25(1 . \overline{8})
\end{aligned}
\end{aligned}
$$

13) (a) $21^{\text {st }}$ digit in $\frac{3}{7}$
$7 \longdiv { 3 . 0 0 0 0 0 0 0 } \begin{array} { l } { \frac { . 2 8 } { 2 0 } } \end{array} \quad \frac { 3 } { 7 } = 0 . 4 2 8 8 7 1 4$

A4) $-1.4 \overline{54},-1 . \overline{454},-1 . \overline{45},-1.45 \overline{4},-1.454$
$\Leftrightarrow-1.4545454 \ldots,-1.454454454 \ldots,-1.454545 \ldots,-1.454444 \ldots$, -1.4540000
$-1.454>-1.45444 \ldots>-1.454454454 \ldots>-1.4545454 \ldots$ $=-1.1545454 . .$.
$-1.454>-1.45 \overline{4}>-1 . \overline{454}>-1.4 \overline{54}=-1.45$

