6.4 Ratios and Proportions

Ratio-- $\frac{a}{b}$ or $a: b$ (read " a to $b^{\prime \prime}$)
fraction; rate
ex $\$ 3.40 /$ gallon
Proportion-- an egg w/ 2 ratios set equal.

$$
\frac{\operatorname{ex}}{} \quad \frac{2}{5}=\frac{x}{10}
$$

Example: In class, there is a 3 to 2 ratio of boys to girls. Write four different ratios.
part to part-- (1) $3: 2(b: g)$
(2) $2: 3(g: b)$
part to whole-- (3) $3: 5$ ($6: \omega$) ($4: \omega$)
w (whole class)

Ex 1. In the last six months, I drove my car for 4460 miles. If I continue driving my car at this same rate, then how many miles will I have driven after 2.75 years (total)?

$$
\begin{aligned}
& \frac{4460 \mathrm{mi}}{6 \mathrm{mos}}=\frac{4460 \mathrm{mi}}{0.5 \mathrm{yr}} \quad \frac{4460}{0.5}=\frac{x}{2.75} \\
& x=\frac{4460(2.75)}{0.5}\left(\frac{2}{2}\right) \\
&=\frac{4460(11)}{2}=2230(11)==\frac{4460(5.5)}{1}
\end{aligned}
$$

Ex 2. An ad says " 3 movies for $\$ 18$." At that rate, what is the cost of 5 movies?
(1)

$$
\frac{3 \text { monies }}{\$ 18}=\frac{5 \text { movies }}{x}
$$

(2) $\frac{518}{3 \mathrm{max}}=\frac{\$ x}{5 \mathrm{mox}}$
(3) $\frac{3 \text { mos. }}{5 \text { nov. }}=\frac{\$ 18}{8 x}$
(4)

$$
\begin{gathered}
\frac{5 \mathrm{mov}}{3 \mathrm{mox}}=\frac{5 x}{\$ 18} \\
x=\$ 30
\end{gathered}
$$

Ex 3. In room A, there are 1 blue hat and 2 red hats, in room B, there are 2 blue hats and 4 red hats, in room C, there are 5 blue hats and 10 red hats. If all the hats in rooms B and C are moved to room A, what will be the ratio of blue hats to red hats? Can you generalize this?

Ex 4. In a photograph of a father and daughter, the daughter's height is 2.3 cm and the father's height is 5.8 cm . If the father is actually 188 cm tall, how tall is his daughter?

$$
\begin{aligned}
\frac{5.8}{188}=\frac{2.3}{x} \quad 2.3(188) & =5.8 x \\
\left(\frac{10}{10}\right) \frac{2.3(188)}{5.8} & =x
\end{aligned}
$$

qu

$$
=(3.7)(2.5)^{\prime}
$$

$$
\begin{align*}
& x=\frac{23(188)}{58}=\frac{23(94)}{29} \\
& 29 \\
& =\frac{2162}{29}
\end{align*}
$$

(on calculator: 74.551.. .)

$$
\begin{aligned}
\frac{2162}{29} & =74 \frac{16}{29} \mathrm{~cm} \\
2162-74(29) & =16
\end{aligned}
$$ approx

$$
\begin{aligned}
& \begin{array}{l}
8: 16=1: 2 \\
(b: r)
\end{array} \\
& \underbrace{\left[\begin{array}{ll}
a_{b} & b l u e \\
a_{r} \text { red }
\end{array}\right.}_{A} \left\lvert\, \frac{\begin{array}{ll}
b_{b} & b l u e \\
b_{r} & \text { red }
\end{array}}{\left[\begin{array}{ll}
c_{b} & b l u e \\
c_{r} & \text { red }
\end{array}\right.}\right. \\
& b \cdot r=\frac{a_{b}+b_{b}+c_{b}}{a_{r}+b_{q}+c_{r}}
\end{aligned}
$$

Ex 5. Al is 5 feet tall and has a shadow that is 18 inches long. At the same time, a tree has a shadow that is 15 feet long. Al sets up and solves the proportion as follows:

$$
\frac{\text { Al ht }}{\text { tree shadow }} \frac{5 \mathrm{ft}}{15 \mathrm{ft}} \neq \frac{18 \text { inches }}{x \text { inches }} \frac{\text { Al shadow }}{\text { tree ht }} \quad \begin{gathered}
\text { proportion is } \\
\text { nd sol up } \\
\text { correctly }
\end{gathered}
$$

Is he correct? If so, why? If not, how would you help him?

$$
\text { (2) }_{\text {TH }}^{A H} \frac{\times f t}{S f t}=\frac{15 f t}{1.5 f t} \frac{T S}{A S}
$$

(3) $\frac{1.5}{5}=\frac{15}{x}$
(4) $\frac{5}{x}=\frac{1.5}{15}$

Fracturws
\#1) $\frac{2}{169}+\frac{33}{104}$

$$
\text { 1) } \begin{aligned}
& \frac{2}{169}+\frac{33}{104} \\
= & \frac{2}{169}\left(\frac{8}{8}\right)+\frac{33}{104}\left(\frac{13}{13}\right)
\end{aligned}
$$

$$
169=13^{2}
$$

$$
=\frac{16+330+99}{8 \cdot 13.13}=\frac{445}{8.13 .13}
$$

$$
=\frac{445}{169(8)}=\frac{445}{1352}
$$

5) $\frac{13(9)}{(0.9)^{2}}-\frac{13^{2}}{10}=\frac{13(9)}{0.9 / 0.9)}\left(\frac{100}{100}\right)-\frac{13^{2}}{10}$

$$
\begin{aligned}
& 0.9(10)=\frac{13(9)(100)}{9(9)}-\frac{13^{2}}{10}=\frac{1300}{9}-\frac{169}{10}(10) \\
& =9 \\
& =\frac{1300}{9}\left(\frac{10}{10}\right)-\frac{169}{10}\left(\frac{9}{9}\right)=\frac{13000-169(9)}{90} \\
& =\frac{13000-1521}{90}=\frac{11479}{90}
\end{aligned}
$$

6.14
8) (a) $x+y=98$

$$
x: y=3: 4 \quad \frac{x}{y}=\frac{3}{4}
$$

$3: 4$
6:8
$9: 12$
12:16

$$
x=\frac{3}{4} y
$$

15:20
18:24
21:28

$$
\frac{4}{7} \cdot \frac{7}{4} y=98 \cdot \frac{4}{7}=14 \cdot 4=56
$$

$$
3.98, \quad y=56 \Rightarrow x=42
$$

$\frac{3}{7} \cdot \frac{98}{1}=?$

$$
\frac{3}{7}=\frac{?}{98} \quad ?=42
$$

(b) product is 768

$$
\begin{aligned}
& 2^{8}=256 \\
& \sqrt{256}=\sqrt{2^{2}}=2^{4} \\
& \text { (1) } y=32, x=\frac{3}{4}(32)=24
\end{aligned}
$$

(2) $y=-32, x=-24$

A9) $2: 3: 5$ total ${ }^{\$} \$ 2000$

$$
\begin{array}{rl}
G: B: C & G: \frac{2}{10}(82,000)=16,400 \\
& B: \frac{3}{10}(82000)=\$ 24,600 \\
& C: \frac{5}{10}(82000)=\$ 41,000
\end{array}
$$

$$
\begin{aligned}
& x y=768 \quad \frac{3}{4}=\frac{x}{y} \\
& \frac{3}{4}(y-y)=768<x=\frac{3}{4} y \\
& y^{2}=77_{5}^{28} \cdot \frac{4}{3}=256(4) \\
& y=16(2) \\
& = \pm 32
\end{aligned}
$$

B21) $\frac{a}{b}=\frac{c}{d}, a \neq-b, a \neq b$
(a) prove $\frac{a+b}{b}=\frac{c+d}{d}$

Pf we know

$$
\begin{aligned}
\text { Pf } \frac{a}{b}=\frac{c}{d} \Rightarrow \frac{a}{b}+1 & =\frac{c}{d}+1 \\
\frac{a}{b}+\frac{b}{b} & =\frac{c}{d}+\frac{d}{d} \\
\text { (b) prove: } \frac{a}{a+b}= & \frac{c}{c+d} b
\end{aligned}=\frac{c+d}{d} J
$$

Pf we know $\frac{a}{b}=\frac{c}{d}$.

$$
\Rightarrow \frac{a d}{b d}=\frac{b c}{b d} \quad(\text { mut. by } 1)
$$

$\Longrightarrow a d=b c \quad$ (mult by bon both sides)

$$
\Rightarrow \quad a c+a d=a c+b c \text { (add ac to both sides) }
$$

$$
\Rightarrow a(c+d)=c(a+b) \quad \text { (factor) }
$$

$$
\Rightarrow \frac{a(c+d)}{(c+d)(a+b)}=\frac{c(a+b)}{(c+d)(c+b)}
$$

Clivide both sides by

$$
\Rightarrow \quad \frac{a}{a+b}=\frac{c}{c+d} \quad(\operatorname{simplify})
$$

All)
D $4 \frac{1}{2} \mathrm{hr}$
total pay $\$ 176$

$$
\begin{aligned}
& 3 \frac{1}{2}: 4 \frac{1}{2}=3.5: 4.5=35: 45=7: 9 \\
& S_{\text {pay }}=\frac{7}{16}(176)=77 \\
& D_{\text {pay }}=\frac{9}{16}(176)=\$ 99
\end{aligned}
$$

