6.1 Rational Numbers

set of rational numbers $=\mathbf{Q}=$

Vocabulary-numerator
denominator
proper fraction
improper fraction

We use fractions in two ways:

1. part-to-whole

We need to consider: (a) the whole, (b) the number of equal-sized parts that the whole has been divided into, and (c) the number of parts we have.
2. relative amount

Draw a Venn Diagram to display the relationship between the natural numbers, whole numbers, integers and rational numbers.

Max claims that $\frac{1}{3}>\frac{1}{2}$ because in the below figure, the shaded portion for $\frac{1}{3}$ is larger than the shaded portion depicting $\frac{1}{2}$. Is he correct? It not, how would you help him?

Equivalent fractions==> fractions that represent the same relative amount

$$
\frac{a}{b}=\frac{a n}{b n} \text { for any nonzero } \mathrm{n}
$$

How to decide if fractions are equal:

$$
\frac{a}{b}=\frac{c}{d} \text { iff } a d=b c \quad(\text { assuming } b \neq 0 \text { and } d \neq 0)
$$

Other ideas?

Ex 1. Are these true or false statements? Why?
(a) $\frac{16}{56}=\frac{2}{7}$
(b) $\frac{2}{6}=\frac{1}{4}$

Ex 2. Create three other equivalent fractions for $\frac{4}{9}$.

Ordering fractions:

1. $\frac{a}{c}<\frac{b}{c}$ iff $a<b$
2. $\frac{a}{b}>\frac{c}{d}$ iff $a d>b c$ (assuming $\mathrm{b}, \mathrm{d}>0$)
3. If $\frac{a}{b}<\frac{c}{d}$, then $\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}$ (assuming that $\mathrm{b}, \mathrm{d}>0$).

Ex 3. Order these rational numbers from least to greatest and plot them on a number line.

$$
\text { (a) } \frac{4}{7}, \frac{9}{10}, \frac{8}{9}, \frac{1}{4}, \frac{2}{5}, \frac{5}{6}
$$

(b) $\frac{3}{4}, \frac{9}{16}, \frac{5}{8}, \frac{2}{3},-\frac{3}{8},-\frac{6}{11},-\frac{4}{9}$

Ex 4. (a) Is this true or false and why? $\frac{7}{8}<\frac{10}{11}$
(b) Tell whether each of these fractions is closer to 0 , one-half or 1 .

$$
\frac{3}{8}, \frac{2}{7}, \frac{1}{3}, \frac{21}{50}, \frac{4}{5}, \frac{7}{11}, \frac{31}{181}, \frac{3}{4}
$$

(c) Fill in the blank with $<,>$ or $=\quad \frac{7}{8} \quad \frac{5}{9}$

Simplifying Fractions

A rational number, a / b, is in simplest form iff the $\operatorname{GCF}(a, b)=1$, assuming b is nonzero.

Ex 5. Simplify these fractions.
(a) $\frac{12}{18}$
(b) $\frac{42}{52}$
(c) $\frac{294}{63}$
(d) $\frac{2^{2} 3^{4} 5^{3}}{2^{3} 3 \cdot 5^{2}}$
(e) $\frac{14 a b^{2}}{20 a^{5} b^{3}}$
(f) $\frac{8+x^{2}}{2 \mathrm{x}}$

Explain why there are infinitely many rational numbers between any two rational numbers.

