6.1 Rational Numbers

set of rational numbers = Q =

Vocabulary--

numerator

denominator

proper fraction

improper fraction

We use fractions in two ways:

1. part-to-whole

We need to consider: (a) the whole, (b) the number of equal-sized parts that the whole has been divided into, and (c) the number of parts we have.

2. relative amount

Draw a Venn Diagram to display the relationship between the natural numbers, whole numbers, integers and rational numbers.

Max claims that $\frac{1}{3} > \frac{1}{2}$ because in the below figure, the shaded portion for $\frac{1}{3}$ is larger than the shaded portion depicting $\frac{1}{2}$. Is he correct? It not, how would you help him?

Equivalent fractions==> fractions that represent the same relative amount

$$\frac{a}{b} = \frac{an}{bn}$$
 for any nonzero n

How to decide if fractions are equal:

$$\frac{a}{b} = \frac{c}{d}$$
 iff $ad = bc$ (assuming $b \neq 0$ and $d \neq 0$)

Other ideas?

- Ex 1. Are these true or false statements? Why?
- (a) $\frac{16}{56} = \frac{2}{7}$

(b)
$$\frac{2}{6} = \frac{1}{4}$$

Ex 2. Create three other equivalent fractions for
$$\frac{4}{9}$$
.

6.1

Ordering fractions:

- 1. $\frac{a}{c} < \frac{b}{c}$ iff a < b
- 2. $\frac{a}{b} > \frac{c}{d}$ iff ad > bc (assuming b, d > 0)

3. If
$$\frac{a}{b} < \frac{c}{d}$$
, then $\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$ (assuming that b, d > 0).

Ex 3. Order these rational numbers from least to greatest and plot them on a number line.

(a)
$$\frac{4}{7}$$
, $\frac{9}{10}$, $\frac{8}{9}$, $\frac{1}{4}$, $\frac{2}{5}$, $\frac{5}{6}$

(b)
$$\frac{3}{4}$$
, $\frac{9}{16}$, $\frac{5}{8}$, $\frac{2}{3}$, $-\frac{3}{8}$, $-\frac{6}{11}$, $-\frac{4}{9}$

4

Ex 4. (a) Is this true or false and why?
$$\frac{7}{8} < \frac{10}{11}$$

(b) Tell whether each of these fractions is closer to 0, one-half or 1.

$$\frac{3}{8}$$
, $\frac{2}{7}$, $\frac{1}{3}$, $\frac{21}{50}$, $\frac{4}{5}$, $\frac{7}{11}$, $\frac{31}{181}$, $\frac{3}{4}$

(c) Fill in the blank with < , > or =.
$$\frac{7}{8} - \frac{5}{9}$$

Simplifying Fractions

A rational number, a/b, is in simplest form iff the GCF(a,b) = 1, assuming b is nonzero.

Ex 5. Simplify these fractions.

(b) $\frac{42}{52}$

(c)
$$\frac{294}{63}$$

(d)
$$\frac{2^2 3^4 5^3}{2^3 3 \cdot 5^2}$$

(e)
$$\frac{14ab^2}{20a^5b^3}$$

(f)
$$\frac{8+x^2}{2x}$$

Explain why there are infinitely many rational numbers between any two rational numbers.