5.2 Multiplication and Division of Integers

Properties for Integers with Multiplication

1. Closure the product of any 2 integers is also an integer
2. Commutativity $a b=b a$
(order duesn't matter for multiplication)
3. Associativity $a(b c)=(a b) c \quad$ (grouping doecint matter)
4. Multiplicative Identity

$$
\mid \in \mathbb{Z}
$$

5. Distributivity

$$
a(b \pm c)=a b \pm a c
$$

6. Zero Multiplication Property

If $a b=0$, then $a=0$ or $b=0$.

1. How would you properly read these statements? And can you explain why th i
(a) $(-1) a=-a=a(-1)$ true
(b) $-a(b)=-(a b)=a(-b)$ true
(c) $(-a)(-b)=a b=-(-(a b))$ tue

$$
-(-(-(-(-(a b)))))=-a b
$$

2. A little more about absolute value. Fill in the blank with $<,=$, or $>$.
(a) $|a|+|b|$ \qquad \geq $|a+b|$
ex $a=5, b=-2$

$$
5+2 \stackrel{?}{>}|5+-2|
$$

$$
\begin{gathered}
|-3|+|-4|=|-3+-4| \\
3+4=7
\end{gathered}
$$

(b) $|a|(|b|)$ \qquad $=$ $|a(b)|$
(c) $|a|-|b| _|a-b|$
ex $a=5, b=2$ ex $a=-5, b=2$ ex $a=5, b=-2$

$$
s-2=|5-2| \quad 5-2 \leq|-5-2| \quad 5-2 \leq|5-(-2)|
$$

(d) $|\mathrm{a}| \div|\mathrm{b}|=|a \div \mathrm{b}|$
ex $a=-5, b=-2$

$$
5-2=|\cdot 5-(-2)|
$$

Multiplication of Integers--various models/algorithms
$O=$ negative one
$O=$ positive one

1. Set Model

2. Pattern
3. Measurement (number line)

4. Area Model

$-2(-3)$

$$
=6 \quad \begin{array}{lllll}
=6 & 0 & 0 & 0 \\
\hline & 0 & 0 & 0 & 0
\end{array}
$$

4. Repeated Addition

$$
\begin{aligned}
5(-3)=-3+-3+3+-3 & +-3 \\
& =-15
\end{aligned}
$$

$$
\begin{aligned}
& 0 \cdot 0=0 \\
& 0 \cdot 0=0 \\
& 0 \cdot 0=0
\end{aligned}
$$

Examples:

1. $-2(5)=5(-2)=-10$

2. $3(-4)=-12$

3. $-5(-6)$

3						
	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

4. Make up a story problem that would produce this computation. 8(-9)
Eight people each our me $\$ 9$.

Division of Integers--various models/algorithms
$a \div b=?$ is equivalent to $a=b(?)$ (assuming b is not zero)(nisig factor)

1. Set Model

2. Pattern

$$
\begin{gathered}
15 \div(-3)=? \\
15 \div 3=5 \\
15 \div(-1)=-15 \\
15 \div(-3)=-5
\end{gathered}
$$

4. Missing Factor
5. Measurement (number line)

$$
-10 \div 2=-5
$$

$$
-10 \div-2=5
$$

Examples:

1. $8 \div(-2)$ (set)

$$
=-4
$$

2. $-12 \div 6$ (\#l line) $=-2$

3. $-15 \div(-3)=$?

$$
\begin{aligned}
\Leftrightarrow-15 & =-3 \cdot ? \\
? & =5
\end{aligned}
$$

4. $-10 \div(-(-(-2))) \quad$ (show on the number line)

5. Make up a story problem that would produce this computation.
$-25 \div 5$
I ore a total of $\$ 25$ to be split equally among 5 friends. How much do I owe each friend?

Ordering Integers

1. If $a<b$ and $b<c$, then a \qquad c.
(transitivity)

2. If $a<b$, then $a+c<b+c$.

3. If $a<b$, then $a p<b p$, assuming $p>0$.

4. If $a<b$, then $a n>b n$, assuming $n<0$.

$$
\begin{aligned}
-3 & <5 \\
(-1)(-3) & ? 5(-1) \\
3 & >-5
\end{aligned}
$$

$3.2 A$
(15)

$$
x \neq 0, x \in \mathbb{Z}
$$

(a) $-x^{2}$ neg.

(c) $(-x)^{2}$ pos.

MC\#3 $(-1) a=-a \Rightarrow(-1)(a b)=-(a b)$ and $(-1)(a b)=(-1 \cdot a) b$ associativty $=-(a) b$

$$
\Rightarrow(-a) b=-(a b)
$$

ne 6

$$
\begin{aligned}
& \frac{-2(-3 x+2)-14}{6}=\frac{6 x-4-14}{6} \\
&=\frac{6 x-18}{6}=x-3 \Rightarrow \text { add } 3 \\
& \text { to got back } \\
& \text { to } x
\end{aligned}
$$

B24) (a)

$$
\begin{aligned}
(a-1)^{2}=(a-1)(a-1) & =a^{2}-a-a+1 \\
& =a^{2}-2 a+1
\end{aligned}
$$

$$
(a-1)(a-1)=a(a-1)-1(a-1)
$$

(b) $199^{2}=(200-1)^{2}=200^{2}-2(200)+1=40000-400+1$ =

