5.1 Addition and Subtraction of Integers

The set of integers $=\mathbf{Z}=\{\ldots,-3,-2,1,0,1,2,3, \ldots\}$

Properties for Integers with Addition

1. Closure ${ }^{n} Z$ is closed under addition" any 2 integers add to give another integer
2. Commutativity

$$
a+b=b+a
$$

3. Associativity

$$
(a+b)+c=a+(b+c)
$$

4. Additive Identity

$$
0+a=a+0=a \quad a \in \mathbb{Z}
$$

5. Additive Inverse

$$
\begin{array}{rr}
a+-a=0=-a+a & \text { ex } a=3 \\
\text { (closed under subtraction) } & 3+-3=0
\end{array}
$$

- sign...its many guises and names

1. Subtraction sign
ex 7-4 $\quad 7$ minus 4"
2. negative sign
ex - 5
3. opposite

$$
-4-3=-7
$$

$$
\text { ex }-(-4)=4
$$

$$
-(-(-(-5)-3
$$

"opp of opp of oppof neg minus 3"

1. How would you properly read these statements? And can you explain why these are true?
(a) $-(-x)=x$
ex $\quad x=-2$
"opp of opp
 of x is $x^{\prime \prime}$

$$
-(-x)=-(-(-2))=-2
$$

(b) $-a+-b=-(a+b)$
ex $a=3, b=-4 \quad-a+-b=-3+4$

$$
=-(3 t-4)
$$

"Opp of $a+$ opp of b is opp of sum $a+b$ "
(c) $a-b=a+(-b)$
"a minus b is a plus app of b "
2. Is -x always negative? no

$$
\begin{array}{r}
\text { ex } x=4,-x=-4 \quad \text { ex } x=-4,-x=4 \\
\text { ex } x=0,-x=0
\end{array}
$$

Absolute Value Definition

$$
|x|= \begin{cases}x, & \text { if } x \geq 0 \\ -x, & \text { if } x<0\end{cases}
$$

ex $|-3|=-(-3)=3$

$$
\begin{aligned}
& |-3|=3 \\
& \qquad \begin{array}{c}
1 \\
-a \\
|a|=|-a|=a
\end{array} \\
& 1
\end{aligned}
$$

Geometrically, the absolute value of a number represents how far away it is from the origin on the real number line.

1. Explain whether the sum of any two negative numbers is also negative.
$p+q$ gives some value further to the left of O
2. Explain whether the sum of a positive integer with a negative integer is positive or negative and why?
it depends ex $-4+5=1 \quad$ ex $-3+3=0$

$$
e x-5+4=-1
$$

3. Simplify.

$$
\begin{array}{llr}
\text { (a) }|x|+x & \text { if } x<0 & \text { ex } \\
=-x+x=0 & x=-1 \\
\text { (b) }-|x|+x & \text { if } x<0 & |x|+x=1
\end{array}
$$

$$
=-(-x)+x=x+x=2 x
$$

(c) $-|x|+x \quad$ if $x>0$

$$
=-(x)+x=0
$$

Addition of Integers--various models/algorithms
$0=$ negative one
$0=$ positive one

1. Set Model
2. Pattern
$2 t-4$

3. Measurement (number line)

$$
4+-7=-3
$$

$$
-4 t-7
$$

$$
-4+7=3
$$

$$
\begin{array}{r}
-3+-(-(-5)) \\
=-8
\end{array}
$$

Examples: $O=$ positive
set. $-2+5 \quad O=$ negative

set
2. $3+-4$

\#line
3. $-5+-6=-11$

4. Make up a story problem that would produce this addition computation.

$$
23+-15+-8
$$

(a) (money) I have $\$ 23$. I bought a t-shirt for $\$ 15$, and another $t \cdot$ shirt for $\$ 8$. How much \$ do I have now?
(b) (sea level) start at 23 feet above sea level.

Add a jump down of 15 ft and another jump down by 8 ft .

Subtraction of Integers--various models/algorithms

2. Measurement (number line)
2. Measurement (number line) 4. Adding the opposite
5. Missing Addend

$$
\begin{array}{c|r}
-3-5=? & 4-9=? \\
\Leftrightarrow-3=5+? & \Leftrightarrow 4=9+? \\
?=-8 & ?=-5
\end{array}
$$

Examples: o positive

3. $-5--6=1$
\#line

4. $10-(-(-2))=8$

5. Make up a story problem that would produce this computation.

$$
23-(-17)=40
$$

I have \$23. my friend remembers he owes me $\$ 7$ t pays it back to me.

(7) (a) $3-(-2)=$? $\Leftrightarrow 3=-2+$?

AN17) $W=$ whole \#s, $I=$ integers, $I^{+}=$pos. integers $I^{\prime}=$ neg. integers
(a) $W U I=I$
(c) $I+U I^{-}=I-\{0\}$
(b) $W \cap I$
(d) $I^{+} \cap I^{-}=\phi$

$$
=w
$$

$\left.B^{22}\right) \quad y=|x-6|$
defn

$$
y=|x|= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}
$$

$$
\begin{aligned}
y & =\left\{\begin{array}{l}
x-6 \text { if } x-6 \geq 0 \\
-(x-6) \text { if } x-6<0
\end{array}\right. \\
& = \begin{cases}x-6 \text { if } x \geq 6 \\
-x+6 & \text { if } x<6\end{cases}
\end{aligned}
$$

$5.1(17)$
(a) $W-I^{+}=\{0\}$
(c) $I \cap I=I$
(b) $W-I^{-}=W$
(d) $I-W=I^{-}$

GCF/LCM Wksht:
\#6) red lights 50/string; bhee lights 30per string
(a) how often do I need hangers?

(H)
\#7)
50
(a) tall as possible both have same ht $\operatorname{GCF}(75,50)$ $=25$
(b) least\#per box (single
codor)
$\operatorname{Lcm}(75,50)$ $=150$
5)

$\operatorname{LCM}(36,24)$

$$
=72
$$

