4.1 \& 4.2: Divisibility \& Prime/Composite Numbers

Prime number--a natural number with exactly two factors, namely 1 and itself.
Composite number--a natural number with more than two factors.

Question: Is 1 prime or composite?

Divides (wording/notation)

$\mathrm{a} \| \mathrm{b}$ (read "a divides b")
other equivalent wording:
a is a factor of b
a is a divisor of b
b is a multiple of a
b is divisible by a

[^0]
Tests for Divisibility

2

5

10

3

9

4

8

6

Why does the divisibility test by 9 work? (And, can we extend such a rule to other bases?) For this argument, use a generic five-digit number.

Examples:

(a) Is $7,465,832$ a multiple of 4 ?
(b) Is 8 a factor of 131,888 ?
(c) Is 497 prime?
(d) Is this true or false? $3 \mid 6 \mathrm{n}$ for any natural number n
(e) Is this true or false? $0 \mid 0$
(f) True or false: If a and b are both whole numbers, and $5 \nmid a$ and $5 \nmid b$, then $5 \nmid(a+b)$.
(g) Is the number $57,729,364,583$ divisible by $2,3,5,6,8$, or 9 ?
(h) Finish this number so that it is divisible by 9: 123456

> (i) I know that 12 pizzas cost $\$ 2$ _0.8_. Can you fill in the missing digits? How much was each pizza?

Fundamental Theorem of Arithmetic

There's only one prime factorization for a composite number.

Prime factorization--

Examples:
(a) Factor 513 completely.
(b) Colored rods are used in many elementary classrooms. The rods vary in length from 1 to 10 cm (in whole number lengths). Various lengths have different colors. A row with all the same color rods is called a one-color train.

\square white is 1 unit \square dark green is 6 units
red is 2 units \square black is 7 units
\square light green is 3 units
\square brown is 8 units

- purple is 4 units \square blue is 9 units
\square yellow is 5 units
orange is 10 units
(i) What rods can be used to form one-color train for 18 ?
(ii) What one-color trains are possible for a length of 24 ?
(iii) If a whole-number length can be represented by an all-red train, an all-green train, and an all-yellow train, what is the least number of factors it must have? What are they?

Ex. Answer these questions about the factors of 97.
(a) If 2 is not a divisor of 97 , can any other multiple of 2 be a divisor of 97 ?
(b) If 3 is not a divisor of 97 , can any multiple of 3 be a divisor of 97 ?
(c) If 5 is not a divisor of 97, what other numbers cannot be divisors of 97 ?
(d) What numbers must you check to see if 97 has any factors before you decide it's prime?

Ex. Find the prime factorizations for the following numbers.
(a) $36^{10}\left(49^{20}\right)\left(6^{15}\right)$
(b) $2(3)(5)(7)(11)+1$
(c) $2\left(3^{4}\right)\left(5^{110}\right)(7)+4\left(3^{4}\right)\left(5^{110}\right)$

How many divisors does a composite number have?

Let's first try this with a few examples.
(a) 32
(b) 75
(c) $2^{3}\left(5^{2}\right)(3)$
(d) Is this enough to see a pattern emerging? If so, predict the total number of factors for $2^{4}\left(3^{5}\right)(5)\left(7^{6}\right)$

Formula: If a composite number has prime factorization of $p_{1}{ }^{n}\left(p_{2}{ }^{m}\right)\left(p_{3}{ }^{r}\right)$, then it has a total of this many factors:

[^0]: Ex. 5 | 25 but $3 \nmid 25$ (i.e. 5 divides 25 but 3 does not divide 25)

