3.3 \& 3.4 Whole Number Multiplication and Division

Multiplication \& Division--binary operations

Properties of Multiplication (with Whole numbers):

1. Closure--
2. Commutativity--
3. Associativity--
4. Multiplicative Identity--
5. Distributivity--
6. Multiplication Property of Zero--

Multiplication Approaches:

Repeated Addition

Rectangular Array
Cartesian Product

Ex Use mental math strategies and the multiplication properties to simplify these expressions.

$$
31(74)+39(74)
$$

25(90)

47(9)
$20_{3}\left(11_{3}\right)$
$41_{7}\left(6_{7}\right)$

Division

Partitive

Measurement

Ex: Classify each of the following division problems as examples of either partitive or measurement division.
(a) A certain airplane climbs at a rate of 300 feet per second. At this rate, how long will it take the plane to reach a cruising altitude of 27,000 feet?
(b) A group of 15 friends pooled equal amounts of money to buy lottery tickets for a $\$ 1,987,005$ jackpot. If they win, how much should each friend receive?
(c) Shauna baked 54 cookies to give to her friends. She wants to give each friend a plate with 6 cookies on it. How many friends can she give cookies to?

Division Approaches:

Repeated Subtraction

The Division Algorithm:
Given any whole numbers a and b with (b not equal to 0), there exist whole numbers q (quotient) and r (remainder) such that

$$
a=b q+r \text { with } 0 \leqq r<b .
$$

(Vocabulary: When a is divided by b and the remainder is zero, then we can say " a is divisible by b " or " b is a divisor of a " or " b divides a.")

```
Ex: 69 % 9
```

Ex. When the marching band was placed in rows of 5 , one member was left over. When the members were placed in rows of 6 , there was still one member left over. However, when they were placed in rows of 7, nobody was left over. What is the smallest number of members in the band?

Inverse Operations:

Four-Fact Families:
Use $3 \times 8=24$

Division by zero is undefined!!

Order of Operations Reminder:

Multiplication

(a) base pieces

(f) area model

(b) chip abacus
(g) standard algorithm
(c) horizontal format
(d) intermediate algorithm
(e) lattice method

Division

(a) base pieces
(c) scaffolding method
(b) chip abacus
(d) intermediate algorithm

More examples:

1. $223_{5} \times 425$
2. $301_{7}-265_{7}$
3. $225_{6} \times 341_{6}$
4. $3214_{5} \div 42_{5}$
5. $12210_{3} \div 201_{3}$
6. $101101_{2} \div 11_{2}$
7. $360 \mathrm{E}_{12} \times 19 \mathrm{~T}_{12}$
8. $307_{8} \times 254_{8}$

Exponents:

$$
a^{m}=\underbrace{a(a)(a)(a) \ldots .(a)}_{m \text { times }} \quad \text { (repeated multiplication) }
$$

Rules of Exponents:

$$
\begin{aligned}
& a^{m} a^{n}=a^{m+n} \\
& \left(a^{m}\right)^{n}=a^{m n} \\
& a^{m} b^{m}=(a b)^{m} \\
& a^{m} \div a^{n}=a^{m-n} \\
& a^{0}=1, \text { if } a \neq 0
\end{aligned}
$$

What is 0° ?

Examples: Simplify.
(a) $\left(5^{7}\right)^{2}$
(b) $2^{5} 2^{4}$
(c) $3^{2} 4^{2}$
(d) $2^{7} \div 2^{3}$
(e) 5^{0}

