3.1 \& 3.2 Whole Number Addition and Subtraction

Addition \& Subtraction--binary operations

Properties of Addition (with Whole numbers):

1. Closure--
2. Commutativity--
3. Associativity--
4. Additive Identity--

Set Model
Measurement Model

Addition Thinking Strategies:

1. Doubles
2. Add zero
3. Commutativity/associativity
4. Counting by 2 s or 5 s
5. Doubles $+/-1$
6. Grouping by tens
7. Counting on

Ex Find three different ways to add:
$5+9$
$14+28+36$
$51+89$
$5_{6}+2_{6}$
$17_{8}+32_{8}$

Subtraction

Take-away approach
Missing addend approach

Table 4.1. A Taxonomy of Addition and Subtraction Word Problems

CHANGE-ADD-TO with	. . . UNINNOWN OUTCOME	. . . unknown change	. . . unknown start
	Alexi had 5 candies. Barb gave him 3 more. How many candies does he have altogether now?	Alexi had 5 candies. Barb gave him some more. Now he has 8 altogether. How many candies did Barb give him?	Alexi had some candies. Barb gave him 3 more. Now he has 8 altogether. How many candies did he start with?
Chance-take-AWAY with	. . . UNKNOWN OUTCOME	. . . uniknown change	. . Unknown start
	Alexi had 8 candies. He gave 5 to Barb. How many candies does he have left?	Alexi had 8 candies. He gave some to Barb. Now he has 3 left. How many candies did he give to Barb?	Alexi had some candies. He gave 5 to Barb. Now he has 3 left. How many candies did he start with?
PART-PART-WHOLE with	. . . UNKNOWN WHOLE	. . . unknown second part	. . . UnkNown first part
	Alexi had 5 fireballs and 3 lollipops. How much candy did he have altogether?	Alexi had 5 fireballs and some lollipops. He had 8 candies altogether. How many were lollipops?	Alexi had some fireballs and 3 lollipops. He had 8 candies altogether. How many were lollipops?

	. . . UNKNOWN DIFFERENCE	. . . UNKNOWN SECOND PART	. . . unknown first part
	Alexi had 8 candies. Barb had 5. How many more does Barb have to buy to have as many as Alexi?	Alexi had 8 candies. Barb had to get 3 more candies to have the same number as Alexi. How many candies did Barb start with?	Alexi had some candies. Barb, who had 5 candies, had to get 3 more to have the same number as Alexi. How many candies did Alexi have?
	. . UNKNOWN DIFFERENCE	. . . UnKNown second part	. . UNKNOWN FIRST PART
COMPARE with	Alexi had 8 candies. Barb had 5. How many more candies did Alexi have than Barb?	Alexi had 8 candies. He had 3 more than Barb. How many candies did Barb have?	Alexi had some candies. He had 3 more than Barb who had 5. How many candies did Alexi have?

解 UNKNON DIFFERENCE would read: Alexi had 8 candies. Barb had 5. How many does Alexi have to give up to have as many as Barb?

Algorithm--

Addition

(a) base pieces
(f) standard algorithm
(b) chip abacus
(c) place-value representation
(d) intermediate algorithm
(e) lattice method

Subtraction

(a) base pieces
(e) standard algorithm
(b) chip abacus
(c) place-value representation
(d) intermediate algorithm

More examples:

1. $423_{5}+143_{5}$
2. $301_{7}-265_{7}$
3. $225_{6}+341_{6}$
4. $3214_{5}-242_{5}$
5. $2120_{3}+212_{3}$
6. $12210_{3}-201_{3}$
7. $3112_{4}-331_{4}$
8. $101010001_{2}+111111_{2}$
9. $2120_{3}+212_{3}$
10. $12210_{3} \times 201_{3}$
11. $3112_{4}-331_{4}$
12. $101010001_{2}+111111_{2}$

What are these kids thinking?

23	515	
-15	562	362
12	-237	
	325	-287
185		

25	
+37	
125	25
	+37
53	

