2.1 Numeration Systems

Number--an idea that represents a quantity.

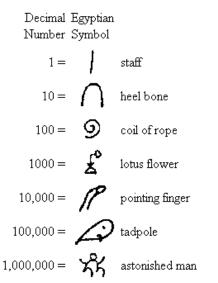
Number uses:
1. to describe how many elements are in a set.
2. order (ordinal #) ex I came in 3rd place.
3. identification (phone #, SSN, uId)
Natural numbers =
$$\{1, 2, 3, ...\}$$
 "ellipsis" = ...
Whole numbers = $\{0, 1, 2, 3, ...\}$

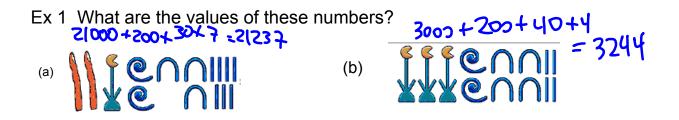
2.1

Historical Numeration Systems:

1. Tally System

THE THE U

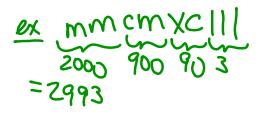

Positive Characteristics/Benefits:


· easy (but tedious)

2. Egyptian System

Positive Characteristics/Benefits:

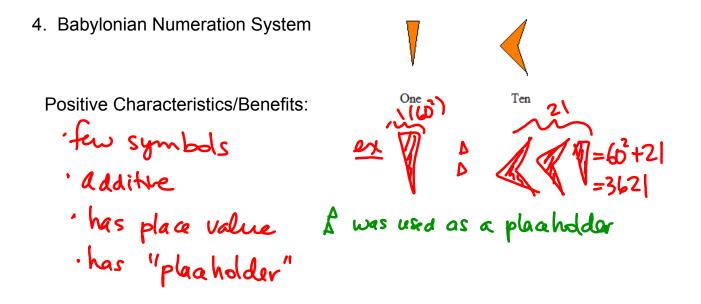
· different symbols for dif. quantities · additure

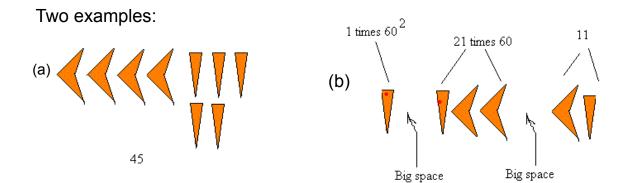


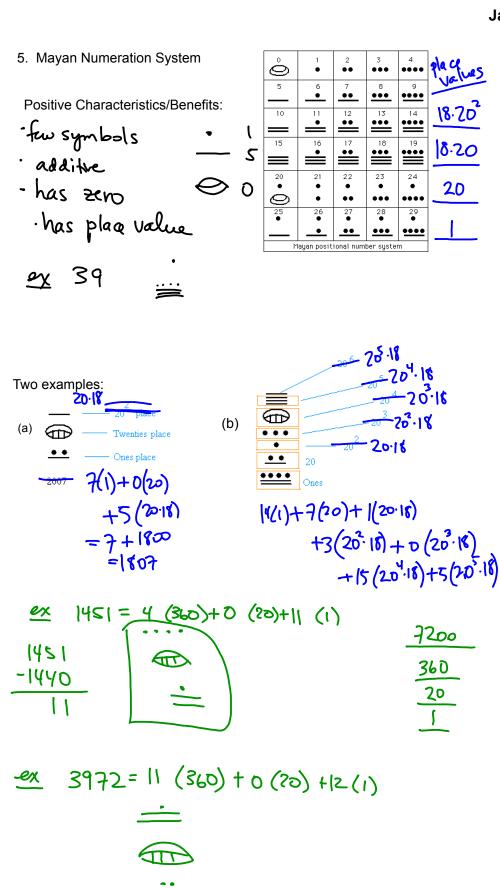
3. Roman Numeral System

Ι	v	х	\mathbf{L}	С	D	\mathbf{M}
1	5	10	50	100	500	1000
Exa	mple:					
XX	XII = 32	5	XLV	Ш = 48	1	
			\mathbf{O}			
2.			ЦO			

Positive Characteristics/Benefits:


- ·few symbols
- · additive · subtractive




ed CCXLIX = 249 202 40 9

I.	1	XXI	21	XLI	41	LXI	61	LXXXI	81
п	2	XXII	22	XLII	42	LXII	62	LXXXII	82
п	3	XXIII	23	XLIII	43	LXIII	63	LXXXIII	83
V	4	XXIV	24	XLIV	44	LXIV	64	LXXXIV	84
7	5	XXV	25	XLV	45	LXV	65	LXXXV	85
/ I	6	XXVI	26	XLVI	46	LXVI	66	LXXXVI	86
п	7	XXVII	27	XLVII	47	LXVII	67	LXXXVII	87
/III	8	XXVIII	28	XLVIII	48	LXVIII	68	LXXXVIII	88
X	9	XXIX	29	XLIX	49	LXIX	69	LXXXIX	89
(10	XXX	30	L	50	LXX	70	XC	90
п	11	XXXI	31	LI	51	LXXI	71	XCI	91
ш	12	XXXII	32	LII	52	LXXII	72	XCII	92
ш	13	XXXIII	33	LIII	53	LXXIII	73	XCIII	93
av	14	XXXIV	34	LIV	54	LXXIV	74	XCIV	94
(V	15	XXXV	35	LV	55	LXXV	75	XCV	95
(VI	16	XXXVI	36	LVI	56	LXXVI	76	XCVI	96
(VII	17	XXXVII	37	LVII	57	LXXVII	77	XCVII	97
(VIII	18	XXXVIII	38	LVIII	58	LXXVIII	78	XCVIII	98
IX	19	XXXIX	39	LIX	59	LXXIX	79	XCIX	99
X	20	XL	40	LX	60	LXXX	80	С	100
						-		D	500
								М	1000

3

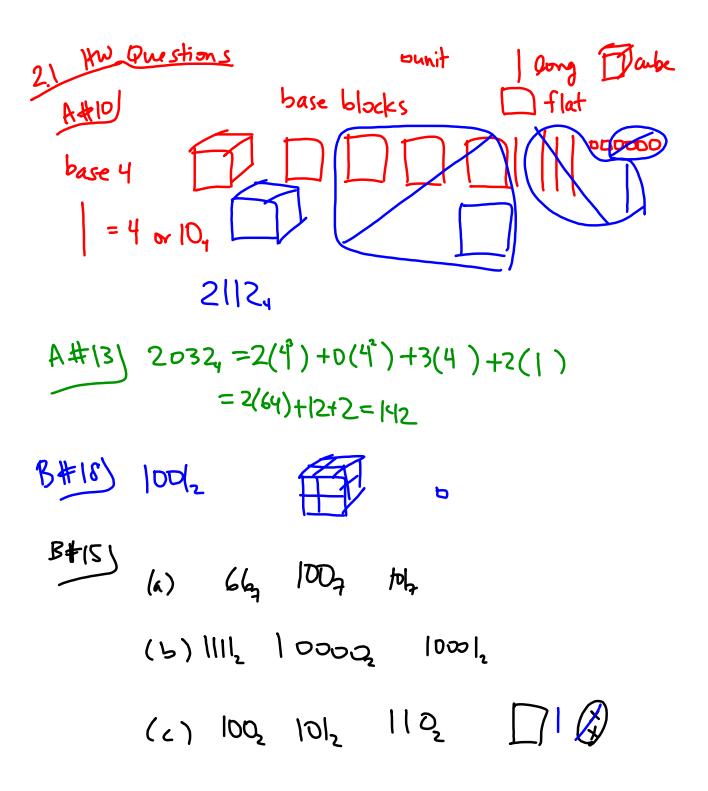
5

6. Hindu-Arabic Numeration System (our current system)

Positive Characteristics/Benefits:

feu symbols (0,1,2,...,9)
have zero ex [23
additive and multiplicative = 1(100)+2(10)+3(1)

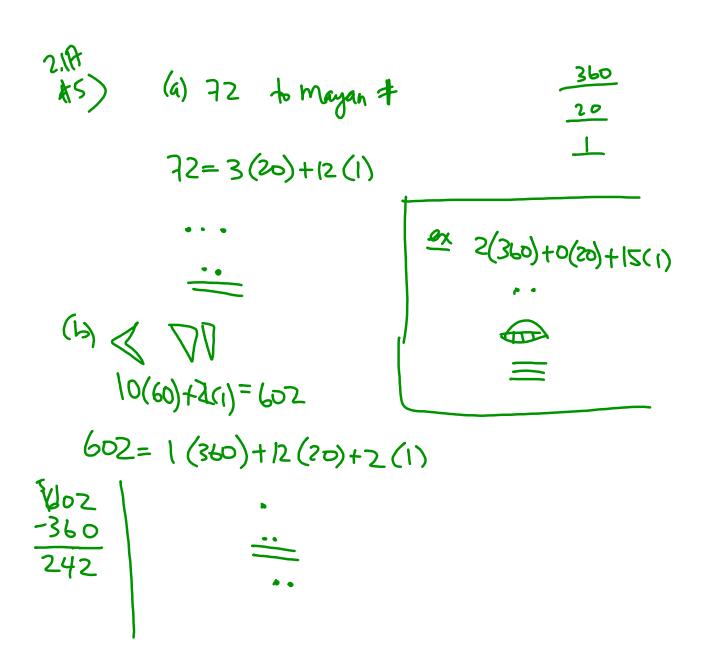
Other Bases We still have place value!!! place values: 3' 3' 3' 5' 5' 5° 625 125 25 5 1 Base 5: (base 10 numbers) only allowable digits (symbols)=0,1,2,3,4 X Ex Convert 39 to base 5. Ex Convert 12_5 to base 10. 39 = ((75) + 2(5) + 4(1)) $|2_{c} = |(s) + 2(1)|$ = 124, = 5+2=7 Convert 401 to base 5. Еż Ex Convert 3415 to base 10. =31015 $34|_{s} = 3(2s) + 4(s) + 1(1)$ 40=3(125)+1(25)+0(5)+1(1)= 75+20+1=96 1

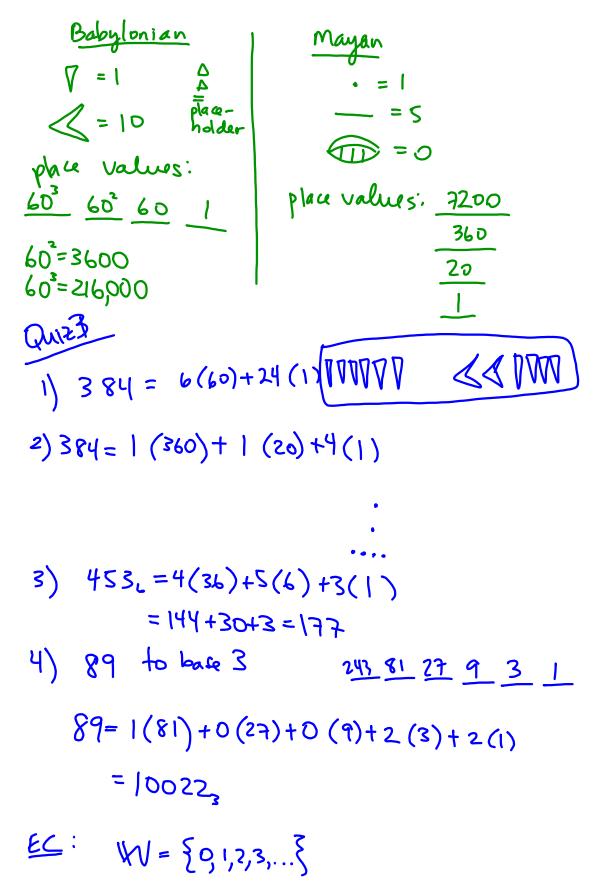

Convert these numbers to base 10.
(a)
$$1011101_2$$
 $\underline{176} \underline{64} \underline{32} \underline{16} \underline{8} \underline{4} \underline{2} \underline{1}$
 $= [(64)+o(32)+((16)+1)(8)+1)(4)+o(2)+1)(1)$
 $= 93$
(b) $1237_8 = 672$ $\underline{512} \underline{64} \underline{8} \underline{1}$
 $[237_8=1](512)+2(64)+3(8)+3(1)+3(1)$
 $= 512+128+24+7 = 671$
(c) $2ET_{12} = 2(12)+E(12)+T(1)-2(144)+11(12)+10(1))$
 $= 2587+132+10=430$

(d)
$$654_7 = b(7) + 5(7) + 4$$

= $b(49) + 35 + 4$
= $274 + 39$
= 333

Convert these numbers from base 10 to the indicated base.


(a) 76 to base 2


$$= \begin{bmatrix} (L^{4}) + 0 (32) + 0 (1L) + 1 (8) + 1 (4) + 0 (2) + 0 (1) \\ = 100 110 D_{2} \\ \end{bmatrix}$$
(b) 982 to base 4 = 33112_{4} 25L L4 L4 L4 L
 $982 = 3(25L) + 3(64) + 1 (1L) + 1 (4) + 2 (1) \\ = 746 t - 142 - 22 - 11L \\ = 100 110 D_{2} \\ \end{bmatrix}$
(c) 131 to base 3 = 11212_{3} 243 81 27 9 3 1
 $|3| = 1(8) + 1(27) + 2(7) + 1(8) + 2(1) - 142 \\ = 100 110 D_{2} \\ \end{bmatrix}$
(d) 519 to base 8 $512 = 64 = 8 - 1 \\ = 1 (512) + 0 (64) + 0(8) + 7(1) \\ = 10078 \end{bmatrix}$

(a) base 2, biggest 3-digit # [1]₂
(b) base 12, T=kn EEE_n

$$0;1;2;3;4;5;6;7;8;7;7;E$$

 $B # 2:1]$ (c) 10 longs inbase 4 (b) 10 longs inbase 3
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]
 $1 = 1$ [1]

