1.1 Problem Solving
"It is important to approach problem solving with the attitude of meeting an intellectual challenge rather than finishing a menial task."

Polya's steps for Problem Solving

1. identify the problem
2. make a plan; devise a strategy for sols
3. implement the plan
4. reflect; decide if it solved the problem.

Problem-solving Strategies:

1. Guess and Test
2. use algebra
3. draw a picture/diagram/table
4. use manipulative
5. math pnuciples (like order of eperations)
6. Look for a pattern
7. Solve a simpler problem
8. work backwards
9. process of elimination

Questions that encourage investigation and create deeper understanding:

1. Why? (or why not?)
2. What if...?
3. What patterns do I notice?
4. What predictions can I make?
5. How is this like (or different)...?
6. Will that always work?
7. Can I do it another way?
8. What other related problems might I explore?

Ex 1: $\begin{array}{r}\text { SUN } \\ + \text { FUN } \\ \hline \text { SWIM }\end{array}$

$$
\begin{aligned}
& F=8 \text { or } 9 \\
& W=0 \text { ore } \quad \frac{\text { other idea }}{134}
\end{aligned}
$$

$$
\frac{+934}{1068}
$$

$$
\begin{aligned}
& \begin{array}{l}
S=1 \quad \text { ty } \quad F=8 \\
U=1
\end{array} \\
& \text { U= } \\
& N= \\
& \begin{array}{l}
F= \\
W=0
\end{array}
\end{aligned}
$$

Ex 2: Find the sum $1+2+3+\ldots+100$.

$$
\begin{aligned}
& 1+100=101 \quad=101(50)=5050 \\
& 2+99=101 \\
& 3+98=101 \\
& \vdots \\
& 50+51=101
\end{aligned}
$$

ex $1+2+3+\ldots+191(1+2+3+\cdots+n$

$$
=192\left(95 \frac{1}{2}\right)
$$

$$
1+191=192
$$

$$
2+190=192
$$

$$
95+97=192
$$

96

Ex 3: Five friends decided to give a party and split the costs equally. AI spent $\$ 4.75$ on invitations, Betty spent $\$ 12.00$ for drinks and $\$ 5.25$ on vegetables, Carl spent $\$ 24.00$ on pizza, Bani spent $\$ 6.00$ on paper plates and napkins, and Ellen spent $\$ 13.00$ for decorations. Determine who owes money to whom and how the money can be paid.

A 4.75
$D \quad 6.00$
E 13.00
B 17.25
C 24.00
total: 65,00
cunt each person should pay in total: $\$ 13$
A owes
8.25 (1) A pays

Doves 7.00
B gets
C gets
4.25
11.00
(3) D pays

Ex 4: An elevator stopped at the middle floor of a building. It then moved up 4 floors, stopped, moved down 6 floors, stopped, and then moved up 10 floors and stopped. The elevator was now 3 floors from the top floor. How many floors does the building have?

Ex 5: We need exactly four gallons of water, but we only have a 5-gallon container and a 3-gallon container, with no measuring marks. How can you use those two containers to measure exactly four gallons?
fill $5 \mathrm{gal} \rightarrow$ pour into 3 gal
\rightarrow dump 2 gal int separate container
repeat to get 4 gal in sep. container
$w /$ no separate container:
fills gal

next: dump 3-gal \Rightarrow
pour 2 gals in 3-gal bucket:

fill 5 -gal bucket:

$$
\Rightarrow 4
$$

Ex 6: Find three consecutive Natural numbers whose sum is 78.
(1)

$$
\frac{78}{3}=26 \quad 25+26+27-78
$$

(2) w/ algebra

$$
x=\text { first \# }
$$

$$
\begin{gathered}
x+x+1+x+2=78 \\
3 x+3=78 \\
3 x=75 \\
x=25
\end{gathered}
$$

Ex 7: Arrange 10 people such that there are five rows each containing four people.

Ex 8: Show why 3 always divides evenly into the sum of any three consecutive whole numbers.

$$
\left\lvert\, \begin{aligned}
& x+x+1+x+2 \\
& =3 x+3 \\
& =3(x+1) \quad 3 \text { is a factor }
\end{aligned}\right.
$$

Ex 9: Find the sum $58+59+\ldots+203$.

$$
\begin{aligned}
& \begin{array}{r}
58+203 \\
59+202 \\
60+201
\end{array} \left\lvert\, \geqslant \frac{(203-58)}{2} \begin{array}{r}
(203+58) \\
=18922.5
\end{array}\right. \\
& 1+2+\cdots+203=\frac{203}{2}(203+1) \\
& 1+2+\ldots+57=\frac{57}{2}(57+1) \\
& 58+59+\cdots+203=(1+2+\cdots+203)-(1+2+\ldots+57) \\
& \left.=\frac{203}{2}(203+1)-\frac{57}{2}(57+1)=203(102)-39 / 57\right) \\
& =19,053
\end{aligned}
$$

$$
\begin{gathered}
47+48+\cdots+1196=\frac{(1196-46)}{2}(47+1196) \\
\quad=714725
\end{gathered}
$$

$$
\begin{aligned}
& B=\text { blah } \\
& I=i c k \\
& Y=\text { yuck } \\
& U=\text { ugh } \\
& G=\text { gloch }
\end{aligned}
$$

G
greatest Bot least $y>u$

names

$$
K, L, J, B, C, G
$$

characteristics
$P=$ pottery
Co costume
F = foreign exchange
$M=m u s i c$
$S=$ swim
0 =owls book

B \#11) 8 marbles, 1 is heavier

side B is heavier: $\frac{B_{1} B_{2}}{B_{1} O_{0} 0} 10$
side B_{1} is heavier:

B13 $\$ 1.19$ quarters, dimes t pennies
(a) ran't make change for dollar

$$
\begin{array}{lll}
\checkmark & 3 q & .75 \\
\checkmark & 4 d & .40 \\
\checkmark & 4 p & .04 \\
& 1.19 & 1
\end{array}
$$

mc \#3 (a) $7+6+5+\cdots+1=28$
(d) generalize for n people:

$$
(n-1)+(n-2)+\cdots+1=\left(\frac{n-1}{2}\right)(n)
$$

ABB)

doesnit work

pall from box B : if get apple, then $B=$ apples $A=0$ and a
if I get orange, B =oranges $\quad C=$ oranges leaves apples as label $\Rightarrow C=a / 0$ or a/o as label $A=$ apples

Quiz $\#$ (3)

	$\$ 5$	$\$ 10$	$\$ 20$	
	0	1	2	
	2	0	2	
	0	3	1	
	2	2	1	
	4	1	1	
	6	0	1	
	0	5	0	
	2	4	0	
	4	3	0	
	6	2	0	
	8	1	0	

\#1)
$x=\#$ sandwiches that I could purchase $15-x=12 \quad x=3$ w/ leftover $\$$
(20) $\frac{3}{15}=\frac{y}{20}(20)$

$$
\begin{gathered}
(20) \frac{1}{5}=y \\
y=4
\end{gathered}
$$

$$
20 a=15 b
$$

$a=$ cost per salad
$b=$ cost per sandwich

$$
\begin{aligned}
& 4 a=3 b \\
& 4(4 a)=4(3 b) \\
& 16 a=\underbrace{12 b}_{\text {total costrindvides }}
\end{aligned}
$$

1.1 A

$$
\begin{aligned}
& \text { N(1b) } 1+3+5+7+9+\cdots 1001
\end{aligned} \begin{aligned}
& \text { 共 } \frac{501,501}{2} \\
& =250,750.5 \\
1+2+3+\cdots+1001=\frac{1002(1001)}{2} & =501(1001) \\
& =500(1001)+1001 \\
& =503500+1,001 \\
& =501,501
\end{aligned}
$$

$$
1+3+5+7+\ldots+997+999+1001
$$

$$
\left\{\begin{array}{c}
1+1001=1002 \\
3+999=1002 \\
5+997=1002 \\
\vdots \\
499+503
\end{array}\right\}
$$

501

ILA
*5
Twins
each has 7 sacks
each sack has 7 cats

$$
\left\lvert\, \begin{array}{cc}
n^{n} \\
1+7+49(7)
\end{array}\right.
$$ each cat has 7 kits

\# living creatures $=1$

