Math5700

Proof Homework

Name: \qquad Date: \qquad
Please staple this sheet (as a cover sheet) to your homework.

1. For the Fibonacci sequence, defined recursively as

$$
\begin{aligned}
& a_{1}=1, a_{2}=1, a_{n}=a_{n-1}+a_{n-2}, n \geq 2, \text { I claim the direct formula is } \\
& a_{n}=\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{\sqrt{5} 2^{n}} \text { for all } n=1,2,3, \ldots
\end{aligned}
$$

Prove this.
2. Prove that for all natural numbers $n, n^{2}-n$ is even.
3. Prove $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 \mathrm{n}+1)}{6}$.
4. Prove that there are infinitely many primes.
5. Make a conjecture about the sum $\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\ldots+\frac{n}{(n+1)!}$ and prove your claim.
6. For f given recursively by $f(0)=0, f(n)=f(n-1)+3 \mathrm{n}+2$ for all $\mathrm{n}=1,2, \ldots$ find an explicit formula for $f(n)$ and prove your formula is valid.
7.

Suppose that we draw on a plane n lines in "general position" (i.e. with no three concurrent, and no two parallel). Let s_{n} be the number of regions into which these lines divide the plane, for example, $s_{3}=7$ in Figure 8.1.

Figure 8.1
(a) By drawing diagrams, find $s_{1}, s_{2}, s_{3}, s_{4}$ and s_{5}
(b) From these results, make a conjecture about a formula for s_{n}
(c) Prove this formula by mathematical induction.

