Math5700 Proof Homework

Name: _____ Date: _____

Please staple this sheet (as a cover sheet) to your homework.

1. For the Fibonacci sequence, defined recursively as

$$a_1 = 1$$
, $a_2 = 1$, $a_n = a_{n-1} + a_{n-2}$, $n \ge 2$, I claim the direct formula is
 $a_n = \frac{(1 + \sqrt{5})^n - (1 - \sqrt{5})^n}{\sqrt{5} 2^n}$ for all $n = 1, 2, 3, ...$

Prove this.

- 2. Prove that for all natural numbers n, $n^2 n$ is even.
- 3. Prove $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$.
- 4. Prove that there are infinitely many primes.

5. Make a conjecture about the sum $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!}$ and prove your claim. 6. For f given recursively by f(0)=0, f(n)=f(n-1)+3n+2 for all $n = 1, 2, \dots$ find an explicit formula for f(n) and prove your formula is valid.

7.

Suppose that we draw on a plane n lines in "general position" (i.e. with no three concurrent, and no two parallel). Let s_n be the number of regions into which these lines divide the plane, for example, $s_3 = 7$ in Figure 8.1.

Figure 8.1

- (a) By drawing diagrams, find s₁, s₂, s₃, s₄ and s₅
- (b) From these results, make a conjecture about a formula for sn
- (c) Prove this formula by mathematical induction.