Math5700, Capstone Course, Spring 2013
 Homework 3

Name: \qquad
Date:
(Please staple this as the cover sheet to the Homework \#3 that you turn in.)

1. Solve these inequalities.
(a) $|4-2 x|+1 \geq 11$
(b) $(y+4)^{4}+5<0$
(c) $\frac{2 \mathrm{x}^{2}+10 \mathrm{x}-16}{x-4} \leq 3$
(d) $\log _{4}(w-1)^{4}+2 \leq \log _{4}(2 \mathrm{w}-2)$
(e) $\log _{4}(w-1)^{3}+2 \leq \log _{4}(2 w-2)$
(f) $\quad-2\left(9^{x^{6}-1}\right) \geq 36$
(g) $\quad x(2 \mathrm{x}-1)(x-3)^{2}<0$
(h) $\frac{1}{x+2} \geq \frac{2}{x-2}$
2. If you're given this inequality $\frac{13}{31}<\frac{8}{19}$ and you need to verify if it is in fact correct, how would you explain this to your students (without a calculator)? And, would it be reasonable to "cross multiply" to check the validity of the statement? Why or why not?
What if the inequality is $-\frac{13}{31}<-\frac{8}{19}$ instead?
What if the inequality is $\frac{13}{31}<\frac{8}{19 \mathrm{x}}$ instead?
3. In which setting or under what conditions do you need to consider cases in solving an inequality?
4. Simplify these expressions.
(a) $\sqrt{x^{2}}$
(b) $(\sqrt{x})^{2}$
(c) $\sqrt[3]{x^{3}}$
(d) $\sqrt{(-3)^{2}}$
