Properties of the number systems

Natural Numbers

- Closure for addition and multiplication, if a and b are natural numbers then $a+b=a$ natural number and $a \cdot b=a$ natural number
- Associative property of multiplication and addition - grouping of the numbers doesn't matter. $(a+b)+c=a+(b+c)$
- Commutative property of multiplication and addition - order of the numbers doesn't matter $a \cdot b=b \cdot a$ and $a+b=b+a$
- Identity property - additive identity is 0, multiplicative identity is 1 $a+0=a$ and $a \cdot 1=a$ and they are contained in the set of natural numbers
- Distributive property - multiplication distributes through addition/subtraction

W

○
Whole numbers

- Closure property - any two whole numbers added or multiplied together will produce another whole number
- Commutative property for addition and multiplication - order of the numbers doesn't matter $a \bullet b=b \bullet a$ and $a+b=b+a$
- Associative property - grouping doesn't matter
- Identity property - additive identity is 0 , multiplicative identity is 1 , and both are contained in the set of whole numbers

○
Integers

- Closure property - any two integers added, subtracted or multiplied together will produce another integer
- Commutative property - only for addition and multiplication the order of the integers doesn't matter
- Associative property - grouping doesn't matter for multiplication and addition
- Identity property - additive identity is 0 , multiplicative identity is 1 , and they are contained in the set of integers
- Inverses - additive inverses are contained in the set of integers: if a is in Z, then so is $-a$
- Distributive property $-a(b+c)=a b+a c$

Rational numbers

- Commutative property - the order of the rational numbers doesn't matter with addition and multiplication
- Associative - grouping doesn't matter with addition and multiplication
- Closure - addition, subtraction and multiplication of two rational numbers will produce a rational number
- Identity property - additive identity is 0 , multiplicative identity is 1 , and both are contained in the set of rational numbers
- Inverses - additive and multiplicative inverses are contained in the set of rational numbers: if a is in Q, then so is $-a$ and so is $1 / a$ (for all nonzero a)
- Distributive property - $a(b+c)=a b+a c$
- Closure - closed under addition, subtraction and multiplication
- Commutative property - the order of the real numbers doesn't matter in addition and multiplication
- Associative property - the grouping of the real numbers in addition and multiplication doesn't matter
- Distributive property $-a(b+c)=a b+a c$
- Identity property - additive identity is 0 , multiplicative identity is 1 , and both are contained in the set of real numbers
- Inverses - additive and multiplicative inverses are contained in the set of real numbers: if a is in R, then so is $-a$ and $1 / a$ (for all nonzero a)

Irrational numbers

- Closure - irrational numbers are not closed under any arithmetic operation
- Associative property - the grouping of irrational numbers in addition and multiplication doesn't matter
- Identity property - there is no additive or multiplicative identity in the set of irrational numbers
- Inverses - additive and multiplicative inverses are contained in the set of irrational numbers

