2.3 Product \& Quotient Rules; Higler-order Derivatives

Product Rule
If $f(x) \xi g(x)$ are differentiable at x, then

$$
\frac{d}{d x}[f(x) g(x)]=f(x) g^{1}(x)+g(x) f^{\prime}(x)
$$

Quotient Rule
If $f(x) \& g(x)$ are differentiable,

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}} \quad \text { (if } g(x) \neq 0 \text {) }
$$

("low d-hi minis hi d-low over low squared")

Ex 1 Find y !
(a) $y=-3(x+2 \sqrt{x})\left(5 x^{3}-2 x+1\right)$
(b) $y=\frac{t^{2}+1}{1-t^{2}}$
2.3 (cont)

Ex 2 Find equ of tangent line to curve given at the pout given.
$y=(x+3)(1-\sqrt{x})$ at pt where $x=1$

Ex 3 Find pts on $y=\frac{x^{2}+x-1}{x^{2}-x+1}$ where tangent line is horizontal.

23 (cont)
ExC Find $\frac{d y}{d x}$ at $x=4$ for $y=\left(x^{2}+2\right)(x+\sqrt{x})$

Ex 5 find $h^{\prime}(0)$ if $h(x)=\frac{3 x^{2}-5 g(x)}{g(x)+4}$ where $g(0)=2$.
2.3 (cont)

Exy
Find second dervative
(a) $y=5 \sqrt{x}+\frac{3}{x^{3}}+\frac{3}{3 \sqrt{x}}+\frac{1}{5}$

$$
y=f(x)
$$

Higler order Devivatives

$f^{\prime}(x)$	$\frac{d y}{d x}$	$D_{x}(y)$	first
$f^{\prime \prime}(x)$	$\frac{d^{2} y}{d x^{2}}$	$D_{x}^{2}(y)$	second
$f^{\prime \prime \prime}(x)$	$\frac{d^{3} y}{d x^{3}}$	$D_{x}^{3}(y)$	thind
$f^{(4)}(x)$	$\frac{d^{4} y}{d x^{4}}$	$D_{x}^{4}(y)$	fourth
$f^{(n)}(x)$	$\frac{d^{n} y}{d x^{n}}$	$D_{x}^{n}(y)$	th $(n \geq 4)$

(b) $y=\left(x^{2}-x\right)\left(2 x-\frac{1}{x}\right)$

