1. (15 points) Consider the quadratic function \(g(x) = 2x^2 - 12x + 9 \).

(a) \(g(-2) = \)

(b) State the roots of this function in reduced radical form.

(c) State the \(y \)-intercept.

(d) Determine the vertex.

(e) Sketch the graph of this function.
2. (15 points) Let \(f(x) = \frac{x(x - 2)}{(x + 1)(x - 3)} \).

(a) Write the equations for the vertical asymptotes (poles).

(b) Write the equation for the horizontal asymptotes.

(c) Find the \(y \)-intercept

(d) Find the \(x \)-intercepts.

(e) Sketch the graph of this function.
3. (15 points) Solve each of these for x. Beware of domain restrictions.

(a) $\ln(x + 1) + \ln(x - 1) = \ln 3$

\[8 = 4e^{3x} \]

(c) $\log_2 \left(\frac{1}{64} \right) = x$
4. (8 points) Solve \[
\begin{align*}
\frac{x^2}{2} - y &= -3 \\
2x + y &= 18
\end{align*}
\]

5. (7 points) Determine all three roots of this equation, writing them in reduced radical form.

\[
x^3 + x^2 + x - 3 = 0.
\]
6. Let \(A = \begin{bmatrix} 1 & 1 & -5 \\ 1 & 0 & -2 \\ 2 & -1 & -4 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 5 \\ 2 & -4 \end{bmatrix}, \) and \(C = \begin{bmatrix} 2 \\ -3 \end{bmatrix}. \)

(a) Find the determinants of \(A \) and \(B \).

(b) Find the inverse of \(B \).

(c) Write a set of linear equations in \(x \) and \(y \) using matrices \(B \) and \(C \).

(d) Solve your system for \(x \) and \(y \).
7. (6 points) For the sequence, \(a_n = (-1)^n(3n - 2) \).

(a) Write the first five terms of this sequence.

\[
\sum_{j=1}^{5} a_j = \]

8. (4 points) Expand and write in decreasing powers of \(x \): \((2x - y)^4\).
9. (15 points) Let \(f(x) = \sqrt{6 - 5x} \), and let \(g(x) \) be the function in the graph:

Find these:

(a) \(f(-2) = \)

(b) \(g(3) = \)

(c) The \(x \)-intercepts of \(g(x) \) are

(d) The \(y \)-intercept of \(f(x) \) is

(e) \(g \circ f(-2) = \)

(f) Find the inverse of \(f(x) \), and state the domain of the inverse.