Formulas

Vertex of a Parabola:

For the parabola represented by $f(x) = ax^2 + bx + c$, the vertex is at $\left(\frac{-b}{2a}, f(\frac{-b}{2a})\right)$.

Definition of Log:

 $\log_a y = x \iff a^x = y \qquad a > 0$

Log Properties:

(1) $\log_a(bc) = \log_a b + \log_a c$ (2) $\log_a(\frac{b}{c}) = \log_a b - \log_a c$ (3) $\log_a(b^n) = n \log_a b$

Change of Base formula:

$$\log_a x = \frac{\log x}{\log a} = \frac{\ln x}{\ln a}$$

Compound Interest formulas:

(1) Compounded n times per year: $A = P(1 + \frac{r}{n})^{nt}$ (2) Compounded continuously: $A = Pe^{rt}$ **Topics:** (from sections 1.9, 2.1-2.7 and 3.1-3.3)

- Finding inverse function.
- Parabolas
 - vertex
 - sketch graph
 - x-intercepts
 - shifts/reflections/stretch or shrink
- Polynomial Division
 - Long Division
 - Synthetic Division
- Complex Numbers
- Finding zeros of a Polynomial
 - Descartes Rule of Signs
 - Rational Root Test
 - Complex roots come in conjugate pairs
 - relationship between factors and roots/zeros
 - multiplicity of zeros
- Analyzing Graph of Polynomial
 - Leading coefficient
 - General shapes
 - x-intercepts
- Analyzing Rational Function graphs
 - Vertical Asymptotes
 - Horizontal Asymptotes
 - Domain
 - x-intercepts
 - Graphs
- Solving Polynomial or Rational Inequalities
 - Exponential and Logarithmic Graphs
 - General shape
 - shifts/reflections/stretch or shrink
 - Vertical Asymptotes
 - Horizontal Asymptotes
 - Domain
- Simplifying exponential/logarithmic expressions
- Solving simple logarithmic/exponential equations (use one-to-one property)