Key Definitions: Sections 3.1-3.3, 4.1-4.7, 5.1-5.2

- The determinant of an $n \times n$ matrix is
- The (i, j)-cofactor of an $n \times n$ matrix A is f a vector space is
- A vector space is
- A subspace of a vector space is
- The null space of an $m \times n$ matrix is
- The column space of an $m \times n$ matrix is
- A linear transformation is
- A basis is
- The \mathcal{B}-coordinates of \mathbf{x} are
- The dimension of a vector space V is
- The rank of A is
- An eigenvector of A is
- An eigenvalue of A is
- Two matrices are similar if

Major Theorems: Sections 3.1-3.3, 4.1-4.7, 5.1-5.2

Chapter 3

Theorem 1 Cofactor Expansion The determinant of an $n \times n$ matrix A can be computed by a cofactor expansion across any row or down any column.

Cofactor expansion across the $i^{\text {th }}$ row is given by:

$$
\operatorname{det}(A)=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n}
$$

Cofactor expansion across the $j^{\text {th }}$ column is given by:

$$
\operatorname{det}(A)=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j}
$$

Theorem 2 If A is a triangular matrix, then $\operatorname{det}(A)$ is the product of the entries on the main diagonal of A.

Theorem 3 Determinant Properties Let A and C be $n \times n$ matrices.
(a) If a multiple of one row of A is added to another row to produce a matrix B, then

$$
\operatorname{det}(B)=
$$

\qquad
(b) If two rows of A are interchanged to produce B, then

$$
\operatorname{det}(B)=
$$

\qquad
(c) If one row of A is multiplied by k to produce B, then

$$
\operatorname{det}(B)=
$$

\qquad
(d) The determinant of the transpose of A is,

$$
\operatorname{det}\left(A^{T}\right)=
$$

\qquad
(e) The determinant of the product $A C$ is,

$$
\operatorname{det}(A C)=
$$

\qquad

Theorem 4 IMT extended A square matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$.

Theorem 5 Cramer's Rule Let A be an invertible $n \times n$ matrix. For any $\mathbf{b} \in \mathbb{R}^{n}$, the unique solution \mathbf{x} of $A \mathbf{x}=\mathbf{b}$ has entries given by

$$
x_{i}=\frac{\operatorname{det}\left(A_{i}(\mathbf{b})\right)}{\operatorname{det}(A)}, \quad i=1,2, \ldots, n .
$$

$A_{i}(\mathbf{b})$ is defined as the matrix where the ith column of A is replaced by \mathbf{b}. That is,

$$
A_{i}(\mathbf{b})=\left[\begin{array}{lllll}
\mathbf{a}_{1} & \ldots & \mathbf{b} & \ldots & \mathbf{a}_{n}
\end{array}\right] .
$$

Theorem 6 An Inverse Formula Let A be an invertible $n \times n$ matrix. Then,

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

where adj (A) denotes the adjugate (or classical adjoint), the $n \times n$ matrix of cofactors $C^{T}=\left[C_{j i}\right]$.

Theorem 7 Area or Volume

If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is $|\operatorname{det}(A)|$.

If A is a 3×3 matrix, the volume of the parallelepiped determined by the columns of A is $|\operatorname{det}(A)|$.

Theorem 8 Expansion Factors

Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be the linear transformation determined by the 2×2 matrix A. If S is a parallelogram in \mathbb{R}^{2}, then

$$
\{\text { area of } T(S)\}=|\operatorname{det}(A)| \cdot\{\text { area of } S\}
$$

Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be the linear transformation determined by the 3×3 matrix A. If S is a parallelepiped in \mathbb{R}^{3}, then

$$
\{\text { volume of } T(S)\}=|\operatorname{det}(A)| \cdot\{\text { volume of } S\}
$$

Chapter 4

Theorem 1 If V is a vector space, and $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}} \in V$, then $\operatorname{span}\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$ is a subspace of V.

Note: we call span $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$ the subspace spanned by $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$.

Theorem 2 The null space of an $m \times n$ matrix is a subspace of \qquad

Theorem 3 The column space of an $m \times n$ matrix is a subspace of

Theorem 4 An indexed set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors with $\mathbf{v}_{1} \neq \mathbf{0}$ is linearly dependent if and only if some vector \mathbf{v}_{j} with $j>1$ is a linear combination of the preceding $\mathbf{v}_{1}, \ldots, \mathbf{v}_{j-1}$.

Theorem 5 Spanning Set Theorem Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\} \subset V$ and $H=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.

- If some $\mathbf{v}_{k} \in S$ is a linear combination of the remaining vectors in S, the set formed by removing \mathbf{v}_{k} still spans H.
- If $H \neq\{\mathbf{0}\}$, some subset of S is a basis for H.

Theorem 6 The pivot columns of a matrix A form a basis for $\operatorname{Col} A$.

Theorem 7 The Unique Representation Theorem

Let $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right\}$ be a basis for a vector space V. Then, for each $\mathbf{x} \in V$, there exist unique $c_{1}, \ldots, c_{n} \in \mathbb{R}$ such that

$$
\mathbf{x}=c_{1} \mathbf{b}_{\mathbf{1}}+\cdots+c_{n} \mathbf{b}_{\mathbf{n}} .
$$

Theorem 8 Let $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right\}$ be a basis for a vector space V. The coordinate mapping $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is a one-to-one linear transformation from V onto \mathbb{R}^{n}.

Theorem 9 If a vector space V has a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then any set in V containing more
than n vectors must be \qquad

Theorem 10 If a vector space V has a basis of n vectors, then every basis of V must consist of
exactly \qquad vectors.

Theorem 11 Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded to a basis for H. Also, H is finite-dimensional and $\operatorname{dim} H \leq \operatorname{dim} V$.

Theorem 12 The Basis Theorem

Let V be a p-dimensional vector space where $p \geq 1$. Any linearly independent set of exactly p elements in V is automatically a basis for V. Any set of exactly p elements that spans V is automatically a basis for V.

Theorem 13 If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.

Theorem 14 The Rank-Nullity Theorem Let A be an $m \times n$ matrix.

$$
\operatorname{rank} A+\operatorname{dim}(N u l A)=
$$

\qquad

Theorem 15 Change of Basis Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$ be bases of a vector space V. Then, there is a unique $n \times n$ matrix $P_{\mathcal{C} \longleftarrow \mathcal{B}}$ such that

$$
[\mathbf{x}]_{\mathcal{C}}=P_{\mathcal{C} \longleftarrow \mathcal{B}}[\mathbf{x}]_{\mathcal{B}}
$$

where the columns $P_{\mathcal{C} \leftarrow \mathcal{B}}$ are the \mathcal{C}-coordinate vectors of the vectors in the basis \mathcal{B}. That is,

$$
P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\left[\mathbf{b}_{1}\right]_{\mathcal{C}}\left[\mathbf{b}_{2}\right]_{\mathcal{C}} \ldots\left[\mathbf{b}_{n}\right]_{\mathcal{C}}\right]
$$

$P_{\mathcal{C} \leftarrow \mathcal{B}}$ is called the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} and is invertible.

Chapter 5

Theorem 1 The eigenvalues of a triangular matrix are the entries on the main diagonal.

Theorem 2 If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ are eigenvectors that correspond to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ of an $n \times n$ matrix A, then the set $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}\right\}$ is linearly independent.

Theorem 3 If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial
and hence, the same \qquad (with the same multiplicities).

The Invertible Matrix Theorem (continued)

Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.
(a) A is an invertible matrix.
(b) A is row equivalent to the $n \times n$ \qquad matrix.
(c) A has \qquad postions.
(d) The equation $A \mathbf{x}=\mathbf{0}$ has only the \qquad solution.
(e) The columns of A form a linearly \qquad set.
(f) The linear transformation $\mathbf{x} \mapsto A \mathrm{x}$ is \qquad .
(g) The equation $A \mathbf{x}=\mathbf{b}$ has \qquad solution for each \mathbf{b} in \mathbb{R}^{n}.
(h) The columns of A \qquad \mathbb{R}^{n}.
(i) The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} \qquad \mathbb{R}^{n}.
(j) There is an $n \times n$ matrix C such that $C A=$ \qquad .
(k) There is an $n \times n$ matrix D such that $A D=$ \qquad .
(l) A^{T} is an \qquad matrix.
(m) The \qquad of A form a basis of \qquad .
(n) $\operatorname{Col} A=$ \qquad
(o) $\operatorname{dim}(\operatorname{Col} A)=$
(p) $\operatorname{rank} A=$ \qquad
(q) $\operatorname{Nul} A=$ \qquad
(r) $\operatorname{dim}(\operatorname{Nul} A)=$
(s) \qquad is not an eigenvalue of A.
(t) $\operatorname{det}(A) \neq$

Supplemental Practice Problems:

1. Let A and B be 5×5 matrices with $\operatorname{det} A=-2$ and $\operatorname{det} B=3$. Use properties of determinants to compute each of the following:
(a) $\operatorname{det} B A$
(b) $\operatorname{det} 2 A$
2. Suppose that all of the entries in an invertible matrix A are integers and $\operatorname{det}(A)=1$. Using the adjugate formula for $A^{-1}, A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$, explain why all the entries of A^{-1} are integers.
3. Compute the area of the parallelogram whose vertices are given by $\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}4 \\ 3\end{array}\right],\left[\begin{array}{c}-1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 5\end{array}\right]$.
4. Use Cramer's Rule to solve the matrix equation

$$
\left[\begin{array}{rrr}
1 & -2 & 0 \\
2 & 0 & -1 \\
0 & 3 & 4
\end{array}\right] \mathbf{x}=\left[\begin{array}{r}
0 \\
-6 \\
5
\end{array}\right]
$$

5. Find the inverse of $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & -3 & 1 \\ 0 & 0 & -2\end{array}\right]$ using the adjugate formula, $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$.
6. Let $M_{2 \times 2}$ be the space of 2×2 matrices with real entries. $M_{2 \times 2}$ has natural operations of matrix addition and scalar multiplication, and with these operations, $M_{2 \times 2}$ is a vector space. (You do not need to check this.) Consider the subset of symmetric matrices:

$$
H=\left\{A \in M_{2 \times 2}: A^{T}=A\right\} .
$$

Is H a subspace of $M_{2 \times 2}$? Justify your answer.
7. Let W be the set of all vectors of the form given below. Find a set S of vectors that spans W or give an example to show that W is not a vector space.
(a) $W=\left\{\left[\begin{array}{c}-a+1 \\ a-6 b \\ 2 b+a\end{array}\right]: a, b \in R\right\}$
(b) $W=\left\{\left[\begin{array}{c}4 a+3 b \\ 0 \\ a+b+c \\ c-2 a\end{array}\right]: a, b, c \in R\right\}$
8. Constructions:
(a) Give an example of a basis $\left\{\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \mathbf{p}_{\mathbf{3}}\right\}$ of $\mathbb{P}_{\mathbf{2}}$ such that $\left[t^{2}\right]_{\mathcal{B}}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.
(b) Give an example of a vector space V whose objects are matrices such that $\operatorname{dim} V=$ 100.
(c) Give an example of a 2×2 matrix A such that $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is not an eigenvector of A with associated eigenvalue $\lambda=4$.
(d) Give an example of a matrix A that has a two-dimensional eigenspace.
(e) Give an example of a 2×2 matrix A with real eigenvalues that is not diagonalizable.
9. Let $M_{2 \times 2}$ be the space of 2×2 matrices with real entries. $M_{2 \times 2}$ has natural operations of matrix addition and scalar multiplication, and with these operations, $M_{2 \times 2}$ is a vector space. (You do not need to check this.) Consider the subset of symmetric matrices:

$$
H=\left\{A \in M_{2 \times 2}: A^{T}=A\right\} .
$$

Is H a subspace of $M_{2 \times 2}$? Justify your answer.
10. For each vector space, determine if the given set is a basis. Justify your answer.
(a) $\mathbb{R}^{2}:\left\{\left[\begin{array}{c}3 \\ -2\end{array}\right],\left[\begin{array}{c}-9 \\ 6\end{array}\right]\right\}$
(b) $\mathbb{R}^{2}:\left\{\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 1\end{array}\right]\right\}$
(c) $\mathbb{R}^{2}:\left\{\left[\begin{array}{l}2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 4\end{array}\right],\left[\begin{array}{l}4 \\ 2\end{array}\right]\right\}$
(d) $\mathbb{R}^{3}:\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]\right\}$
(e) $\mathbb{R}^{3}:\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]\right\}$
11. For each space, find a basis and express the redundant vectors as linear combinations of the basis vectors.
(a) $\operatorname{span}\left\{\left[\begin{array}{c}2 \\ -1\end{array}\right],\left[\begin{array}{c}-3 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}5 \\ 2\end{array}\right]\right\}$
(b) $\operatorname{span}\left\{\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{c}-3 \\ 3 \\ 6\end{array}\right],\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right]\right\}$
12. Consider the matrix $A=\left[\begin{array}{cc}1 & -2 \\ 2 & 6\end{array}\right]$.
(a) Find the characteristic polynomial of A.
(b) Find the eigenvalues of A and their corresponding eigenspaces.
13. Consider the set $\mathcal{B}=\mathbf{u}, \mathbf{v}$ where $\mathbf{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\left[\begin{array}{c}-2 \\ 6\end{array}\right]$.
(a) Explain why \mathcal{B} is a basis for \mathbb{R}^{2}.
(b) Express the vectors $\left[\begin{array}{c}3 \\ -4\end{array}\right],\left[\begin{array}{c}-4 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 1\end{array}\right]$ in terms of the basis \mathcal{B}.
(c) Sketch the grid associated to \mathcal{B} along with the vectors from part(b).
14. For each matrix, compute its rank and find a basis for its column space; compute its nullity and find a basis for its null space.
(a) $\left[\begin{array}{rrrrr}1 & 2 & -3 & -2 & 1 \\ -1 & -2 & 5 & 6 & 3 \\ 3 & 6 & -2 & 8 & 17\end{array}\right]$
(b) $\left[\begin{array}{rrr}1 & 6 & -3 \\ 2 & 7 & -1 \\ 3 & 8 & 1 \\ 4 & 9 & 3 \\ 5 & 10 & 5\end{array}\right]$
15. Consider the set $\mathcal{B}=\left\{1+t, 1+t^{2}, t+t^{2}\right\}$ in \mathbb{P}_{2}.
(a) Is \mathcal{B} a basis for \mathbb{P}_{2} ? Show work in support of your answer.
(b) Compute the \mathcal{B}-coordinates of the vector $2+2 t+2 t^{2} \in \mathbb{P}_{2}$.
16. Consider the matrix A and its factorization

$$
A=\left[\begin{array}{ccc}
-2 & 4 & 0 \\
0 & 2 & 0 \\
3 & -2 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 0 & 1 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & -2 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Compute A^{9}.
17. Let $A=\left[\begin{array}{ccc}1 & 6 & -3 \\ 0 & 0 & 0 \\ -2 & -12 & 6\end{array}\right]$.
(a) Find the reduced row echelon form of A.
(b) Find a basis for $\operatorname{Nul} A$. What is $\operatorname{dim}(\operatorname{Nul} A)$?
(c) Find a basis for $\operatorname{Col} A$. What is $\operatorname{dim}(\operatorname{Col} A)$?
(d) Find a basis for $\operatorname{Row} A$. What is $\operatorname{dim}(\operatorname{Row} A)$?
18. Is the set of polynomials $\left\{1+2 t, 3 t+3 t^{2}, 4 t+7 t^{2}\right\}$ a basis for \mathbb{P}_{2} ? Show supporting work!
19. Consider the basis $\mathcal{B}=\left\{\left[\begin{array}{c}-2 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 0\end{array}\right]\right\}$ of \mathbb{R}^{2}.
(a) Compute the \mathcal{B}-coordinates of each of the following vectors in $\mathbb{R}^{2}:\left[\begin{array}{c}-2 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 0\end{array}\right],\left[\begin{array}{l}4 \\ 1\end{array}\right]$
(b) Write down the matrix $\underset{\mathcal{E} \leftarrow \mathcal{B}}{P}$ that converts \mathcal{B}-coordinates to standard coordinates. Multiply $\underset{\mathcal{E} \leftarrow \mathcal{B}}{P}$ by one of your answers in the previous part to check that you get back the original vector.
(c) Compute the matrix $\underset{\mathcal{B} \leftarrow \mathcal{E}}{P}$ that converts standard coordinates to \mathcal{B}-coordinates. Compute $\underset{\mathcal{B} \leftarrow \mathcal{E}}{P}\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ and $\underset{\mathcal{B} \leftarrow \mathcal{E}}{P}\left[\begin{array}{l}4 \\ 1\end{array}\right]$. You should get your answers in the first part.
20. Let $\mathbb{P}_{2} \xrightarrow{T} \mathbb{R}^{2}$ be the linear transformation defined by $T(\mathbf{p})=\left[\begin{array}{c}\mathbf{p}(-1) \\ \mathbf{p}(2)\end{array}\right]$.
(a) Compute $T(1), T(t)$, and $T\left(t^{2}\right)$. Let $\mathcal{E}=\left\{1, t, t^{2}\right\}$ be the standard basis of \mathbb{P}_{2}. Using the coordinate mapping $\mathbb{P}_{2} \xrightarrow{[]} \mathbb{R}^{3}$, we can view T as a linear transformation $\mathbb{R}^{3} \xrightarrow{S} \mathbb{R}^{2}$ defined by $S(\mathbf{x})=A \mathbf{x}$.
(b) Write down the matrix A. Hint: the columns of A are your answers in (a).
(c) Use the matrix A to check that $S\left(\left[t^{2}\right]_{\mathcal{E}}\right)=T\left(t^{2}\right)$.
(d) Compute a basis for $\operatorname{Nul} A$.
(e) Use your answer in (d) to write down a basis for the kernel of T.
21. Write down the equation that defines what it means for \mathbf{x} to be an eigenvector of matrix A with associated eigenvalue λ.
22. Show that $\left[\begin{array}{c}7 \\ -2\end{array}\right]$ is an eigenvector of $\left[\begin{array}{cc}1 & 7 \\ 0 & -1\end{array}\right]$ and compute its eigenvalue λ.
23. Suppose $\lambda=6$ is an eigenvalue for the matrix

$$
A=\left[\begin{array}{ccc}
3 & 0 & 2 \\
-6 & 6 & 4 \\
-3 & 0 & 8
\end{array}\right]
$$

Compute a basis for the associated eigenspace.
24. Let $A=\left[\begin{array}{ll}-1 & 4 \\ -2 & 5\end{array}\right]$.
(a) Compute the eigenvalues λ_{1}, λ_{2} of A.
(b) Compute the associated eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ of A.
25. Is it possible for a nonhomogeneous system of seven equations in six unknowns to have a unique solution for some right-hand side of constants? Is it possible for such a system to have a unique solution for every right-hand side? Justify your answer.
26. Determine whether each subset of vectors is a subspace of a vector space. If so, find the dimension of the subspace and identify the vector space.
(a) $\operatorname{span}\left\{\left[\begin{array}{c}2 \\ 0 \\ -1\end{array}\right]\right\}$,
(b) Row A,
(c) $\mathrm{Nul} A^{T}$,
(d) $\left\{\left[\begin{array}{c}4 a+3 b \\ a \\ b\end{array}\right]: a, b \in \mathbb{R}\right\}$,
(e) $\left\{y(t)=c_{1} \cos (\omega t)+c_{2} \sin (\omega t): c_{1}, c_{2} \in \mathbb{R}\right\}$
27. Define $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$ where A is a 3×3 matrix with eigenvalues 5 and -2 . Does there exist a basis \mathcal{B} for \mathbb{R}^{3} such that the \mathcal{B}-matrix for T is a diagonal matrix? Justify your answer.

