Key Definitions: Sections 3.1-3.3, 4.1-4.7, 5.1-5.2

- The determinant of an $n \times n$ matrix is
- The (i, j)-cofactor of an $n \times n$ matrix A is f a vector space is
- A vector space is
- A subspace of a vector space is
- The null space of an $m \times n$ matrix is
- The column space of an $m \times n$ matrix is
- A linear transformation is
- A basis is
- The \mathcal{B} -coordinates of \mathbf{x} are
- ullet The dimension of a vector space V is
- The rank of A is

- \bullet An eigenvector of A is
- $\bullet\,$ An eigenvalue of A is
- Two matrices are similar if

Major Theorems: Sections 3.1-3.3, 4.1-4.7, 5.1-5.2

Chapter 3

Theorem 1 Cofactor Expansion The determinant of an $n \times n$ matrix A can be computed by a cofactor expansion across any row or down any column.

Cofactor expansion across the ith row is given by:

$$det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$$

Cofactor expansion across the j^{th} column is given by:

$$det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$$

Theorem 2 If A is a triangular matrix, then det(A) is the product of the entries on the main diagonal of A.

Theorem 3 Determinant Properties Let A and C be $n \times n$ matrices.

(a) If a multiple of one row of A is added to another row to produce a matrix B, then

$$det(B) = \underline{\hspace{1cm}}$$

(b) If two rows of A are interchanged to produce B, then

$$det(B) = \underline{\hspace{1cm}}$$

(c) If one row of A is multiplied by k to produce B, then

$$det(B) = \underline{\hspace{1cm}}$$

 $(d) \ \ \textit{The determinant of the transpose of A is,}$

$$det(A^T) =$$

(e) The determinant of the product AC is,

$$det(AC) = \underline{\hspace{1cm}}$$

Theorem 4 IMT extended A square matrix A is invertible if and only if $det(A) \neq 0$.

Theorem 5 Cramer's Rule Let A be an invertible $n \times n$ matrix. For any $\mathbf{b} \in \mathbb{R}^n$, the unique solution \mathbf{x} of $A\mathbf{x} = \mathbf{b}$ has entries given by

$$x_i = \frac{\det(A_i(\mathbf{b}))}{\det(A)}, \quad i = 1, 2, \dots, n.$$

 $A_i(\mathbf{b})$ is defined as the matrix where the ith column of A is replaced by **b**. That is,

$$A_i(\mathbf{b}) = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{b} & \dots & \mathbf{a}_n \end{bmatrix}.$$

Theorem 6 An Inverse Formula Let A be an invertible $n \times n$ matrix. Then,

$$A^{-1} = \frac{1}{\det(A)} adj(A)$$

where adj(A) denotes the adjugate (or classical adjoint), the $n \times n$ matrix of cofactors $C^T = [C_{ji}]$.

Theorem 7 Area or Volume

If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is |det(A)|.

If A is a 3×3 matrix, the volume of the parallelepiped determined by the columns of A is |det(A)|.

Theorem 8 Expansion Factors

Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the linear transformation determined by the 2×2 matrix A. If S is a parallelogram in \mathbb{R}^2 , then

$$\{area\ of\ T(S)\} = |det(A)| \cdot \{area\ of\ S\}$$

Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be the linear transformation determined by the 3×3 matrix A. If S is a parallelepiped in \mathbb{R}^3 , then

$$\{volume\ of\ T(S)\} = |det(A)| \cdot \{volume\ of\ S\}$$

Chapter 4

Theorem 1 If V is a vector space, and $\mathbf{v_1}, \dots, \mathbf{v_p} \in V$, then $span\{\mathbf{v_1}, \dots, \mathbf{v_p}\}$ is a subspace of V.

Note: we call $span\{v_1, \dots, v_p\}$ the subspace spanned by $\{v_1, \dots, v_p\}$.

Theorem 2 The null space of an $m \times n$ matrix is a subspace of _____

Theorem 3 The column space of an $m \times n$ matrix is a subspace of _____

Theorem 4 An indexed set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ of two or more vectors with $\mathbf{v}_1 \neq \mathbf{0}$ is linearly dependent if and only if some vector \mathbf{v}_j with j > 1 is a linear combination of the preceding $\mathbf{v}_1, \dots, \mathbf{v}_{j-1}$.

Theorem 5 Spanning Set Theorem Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\} \subset V$ and $H = span\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

- If some $\mathbf{v}_k \in S$ is a linear combination of the remaining vectors in S, the set formed by removing \mathbf{v}_k still spans H.
- If $H \neq \{0\}$, some subset of S is a basis for H.

Theorem 6 The pivot columns of a matrix A form a basis for Col A.

Theorem 7 The Unique Representation Theorem

Let $\mathcal{B} = \{\mathbf{b_1}, \dots, \mathbf{b_n}\}$ be a basis for a vector space V. Then, for each $\mathbf{x} \in V$, there exist **unique** $c_1, \dots, c_n \in \mathbb{R}$ such that

$$\mathbf{x} = c_1 \mathbf{b_1} + \dots + c_n \mathbf{b_n}.$$

Theorem 8 Let $\mathcal{B} = \{\mathbf{b_1}, \dots, \mathbf{b_n}\}$ be a basis for a vector space V. The coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is a **one-to-one** linear transformation from V **onto** \mathbb{R}^n .

Theorem 9 If a vector space V has a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, then any set in V containing more
than n vectors must be
Theorem 10 If a vector space V has a basis of n vectors, then every basis of V must consist of
exactly vectors.

Theorem 11 Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded to a basis for H. Also, H is finite-dimensional and dim $H \leq \dim V$.

Theorem 12 The Basis Theorem

Let V be a p-dimensional vector space where $p \geq 1$. Any linearly independent set of exactly p elements in V is automatically a basis for V. Any set of exactly p elements that spans V is automatically a basis for V.

Theorem 13 If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.

Theorem 14 The Rank-Nullity Theorem Let A be an $m \times n$ matrix.

$$rank A + dim(Nul A) = \underline{\hspace{1cm}}$$

Theorem 15 Change of Basis Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_n\}$ be bases of a vector space V. Then, there is a unique $n \times n$ matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ such that

$$[\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C} \longleftarrow \mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

where the columns $P_{\mathcal{C} \leftarrow \mathcal{B}}$ are the \mathcal{C} -coordinate vectors of the vectors in the basis \mathcal{B} . That is,

$$P_{\mathcal{C}\longleftarrow\mathcal{B}}=[[\mathbf{b}_1]_{\mathcal{C}}\ [\mathbf{b}_2]_{\mathcal{C}}\dots[\mathbf{b}_n]_{\mathcal{C}}]$$

 $P_{\mathcal{C} \leftarrow \mathcal{B}}$ is called the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} and is invertible.

Chapter 5

(n) Col A =_____

Theorem 1 The eigenvalues of a triangular matrix are the entries on the main diagonal.

Theorem 2 If $\mathbf{v}_1, \dots, \mathbf{v}_r$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \dots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{\mathbf{v_1}, \dots, \mathbf{v_r}\}$ is linearly independent.

Theorem 3 If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence, the same _____ (with the same multiplicities).

The Invertible Matrix Theorem (continued)

Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for

a given A , the statements are either all true or all false.			
(a)	A is an <u>invertible</u> matrix.		
(b)	A is row equivalent to the $n \times n$ matrix.		
(c)	A has postions.		
(d)	The equation $A\mathbf{x} = 0$ has only the solution.		
(e)	The columns of A form a linearly set.		
(f)	The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is		
(g)	The equation $A\mathbf{x} = \mathbf{b}$ has solution for each	\mathbf{b} in \mathbb{R}^n .	
(h)	The columns of A \mathbb{R}^n .		
(i)	The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n	\mathbb{R}^n .	
(j)	There is an $n \times n$ matrix C such that $CA = \underline{\hspace{1cm}}$	_•	
(k)	There is an $n \times n$ matrix D such that $AD = \underline{\hspace{1cm}}$	_•	
(l)	A^T is an matrix.		
(m)	The of A form a basis of		

- (o) $\dim(\operatorname{Col} A) = \underline{\hspace{1cm}}$
- (p) rank $A = \underline{\hspace{1cm}}$
- (q) Nul A =_____
- (r) $\dim(\text{Nul }A) = \underline{\hspace{1cm}}$
- (s) _____ is not an eigenvalue of A.
- (t) $det(A) \neq \underline{\hspace{1cm}}$

Supplemental Practice Problems:

- 1. Let A and B be 5×5 matrices with det A = -2 and det B = 3. Use properties of determinants to compute each of the following:
 - (a) $\det BA$
 - (b) $\det 2A$
- 2. Suppose that all of the entries in an invertible matrix A are integers and $\det(A) = 1$. Using the adjugate formula for A^{-1} , $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$, explain why all the entries of A^{-1} are integers.
- 3. Compute the area of the parallelogram whose vertices are given by $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 5 \end{bmatrix}$.
- 4. Use Cramer's Rule to solve the matrix equation

$$\begin{bmatrix} 1 & -2 & 0 \\ 2 & 0 & -1 \\ 0 & 3 & 4 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 0 \\ -6 \\ 5 \end{bmatrix}$$

- 5. Find the inverse of $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & -3 & 1 \\ 0 & 0 & -2 \end{bmatrix}$ using the adjugate formula, $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$.
- 6. Let $M_{2\times 2}$ be the space of 2×2 matrices with real entries. $M_{2\times 2}$ has natural operations of matrix addition and scalar multiplication, and with these operations, $M_{2\times 2}$ is a vector space. (You do not need to check this.) Consider the subset of symmetric matrices:

$$H = \{ A \in M_{2 \times 2} : A^T = A \}.$$

Is H a subspace of $M_{2\times 2}$? Justify your answer.

7. Let W be the set of all vectors of the form given below. Find a set S of vectors that spans W or give an example to show that W is not a vector space.

(a)
$$W = \left\{ \begin{bmatrix} -a+1\\ a-6b\\ 2b+a \end{bmatrix} : a, b \in R \right\}$$

(b)
$$W = \left\{ \begin{bmatrix} 4a+3b\\0\\a+b+c\\c-2a \end{bmatrix} : a,b,c \in R \right\}$$

- 8. Constructions:
 - (a) Give an example of a basis $\{\mathbf{p_1}, \mathbf{p_2}, \mathbf{p_3}\}$ of \mathbb{P}_2 such that $[t^2]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.
 - (b) Give an example of a vector space V whose objects are matrices such that $\dim V = 100$.
 - (c) Give an example of a 2×2 matrix A such that $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is not an eigenvector of A with associated eigenvalue $\lambda = 4$.

- (d) Give an example of a matrix A that has a two-dimensional eigenspace.
- (e) Give an example of a 2×2 matrix A with real eigenvalues that is not diagonalizable.
- 9. Let $M_{2\times 2}$ be the space of 2×2 matrices with real entries. $M_{2\times 2}$ has natural operations of matrix addition and scalar multiplication, and with these operations, $M_{2\times 2}$ is a vector space. (You do not need to check this.) Consider the subset of symmetric matrices:

$$H = \{ A \in M_{2 \times 2} : A^T = A \}.$$

Is H a subspace of $M_{2\times 2}$? Justify your answer.

- 10. For each vector space, determine if the given set is a basis. Justify your answer.
 - (a) $\mathbb{R}^2 : \left\{ \begin{bmatrix} 3 \\ -2 \end{bmatrix}, \begin{bmatrix} -9 \\ 6 \end{bmatrix} \right\}$
 - (b) $\mathbb{R}^2 : \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \end{bmatrix} \right\}$
 - $(c) \ \mathbb{R}^2: \left\{ \begin{bmatrix} 2\\3 \end{bmatrix}, \begin{bmatrix} 3\\4 \end{bmatrix}, \begin{bmatrix} 4\\2 \end{bmatrix} \right\}$
 - (d) $\mathbb{R}^3 : \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\3\\4 \end{bmatrix}, \begin{bmatrix} 3\\4\\5 \end{bmatrix} \right\}$
 - (e) $\mathbb{R}^3: \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\3\\1 \end{bmatrix}, \begin{bmatrix} 3\\1\\2 \end{bmatrix} \right\}$
- 11. For each space, find a basis and express the redundant vectors as linear combinations of the basis vectors.
 - (a) span $\left\{ \begin{bmatrix} 2\\-1 \end{bmatrix}, \begin{bmatrix} -3\\3 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 5\\2 \end{bmatrix} \right\}$
 - (b) span $\left\{ \begin{bmatrix} 1\\-1\\2 \end{bmatrix}, \begin{bmatrix} -3\\3\\6 \end{bmatrix}, \begin{bmatrix} 2\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\2\\-3 \end{bmatrix} \right\}$
- 12. Consider the matrix $A = \begin{bmatrix} 1 & -2 \\ 2 & 6 \end{bmatrix}$.
 - (a) Find the characteristic polynomial of A.
 - (b) Find the eigenvalues of A and their corresponding eigenspaces.
- 13. Consider the set $\mathcal{B} = \mathbf{u}, \mathbf{v}$ where $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} -2 \\ 6 \end{bmatrix}$.
 - (a) Explain why \mathcal{B} is a basis for \mathbb{R}^2 .
 - (b) Express the vectors $\begin{bmatrix} 3 \\ -4 \end{bmatrix}$, $\begin{bmatrix} -4 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ in terms of the basis \mathcal{B} .
 - (c) Sketch the grid associated to $\mathcal B$ along with the vectors from part(b).
- 14. For each matrix, compute its rank and find a basis for its column space; compute its nullity and find a basis for its null space.

(a)
$$\begin{bmatrix} 1 & 2 & -3 & -2 & 1 \\ -1 & -2 & 5 & 6 & 3 \\ 3 & 6 & -2 & 8 & 17 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 6 & -3 \\ 2 & 7 & -1 \\ 3 & 8 & 1 \\ 4 & 9 & 3 \\ 5 & 10 & 5 \end{bmatrix}$$

- 15. Consider the set $\mathcal{B} = \{1+t, 1+t^2, t+t^2\}$ in \mathbb{P}_2 .
 - (a) Is \mathcal{B} a basis for \mathbb{P}_2 ? Show work in support of your answer.
 - (b) Compute the \mathcal{B} -coordinates of the vector $2 + 2t + 2t^2 \in \mathbb{P}_2$.
- 16. Consider the matrix A and its factorization

$$A = \begin{bmatrix} -2 & 4 & 0 \\ 0 & 2 & 0 \\ 3 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

Compute A^9 .

17. Let
$$A = \begin{bmatrix} 1 & 6 & -3 \\ 0 & 0 & 0 \\ -2 & -12 & 6 \end{bmatrix}$$
.

- (a) Find the reduced row echelon form of A.
- (b) Find a basis for NulA. What is dim(NulA)?
- (c) Find a basis for ColA. What is dim(ColA)?
- (d) Find a basis for Row A. What is $\dim(\text{Row }A)$?
- 18. Is the set of polynomials $\{1+2t, 3t+3t^2, 4t+7t^2\}$ a basis for \mathbb{P}_2 ? Show supporting work!
- 19. Consider the basis $\mathcal{B} = \left\{ \begin{bmatrix} -2\\1 \end{bmatrix}, \begin{bmatrix} 2\\0 \end{bmatrix} \right\}$ of \mathbb{R}^2 .
 - (a) Compute the \mathcal{B} -coordinates of each of the following vectors in \mathbb{R}^2 : $\begin{bmatrix} -2\\1 \end{bmatrix}$, $\begin{bmatrix} 2\\0 \end{bmatrix}$, $\begin{bmatrix} 4\\1 \end{bmatrix}$
 - (b) Write down the matrix $P_{\mathcal{E}\leftarrow\mathcal{B}}$ that converts \mathcal{B} -coordinates to standard coordinates. Multiply $P_{\mathcal{E}\leftarrow\mathcal{B}}$ by one of your answers in the previous part to check that you get back the original vector.
 - (c) Compute the matrix $P_{\mathcal{B}\leftarrow\mathcal{E}}$ that converts standard coordinates to \mathcal{B} -coordinates. Compute $P_{\mathcal{B}\leftarrow\mathcal{E}}\begin{bmatrix} -2\\1 \end{bmatrix}$ and $P_{\mathcal{B}\leftarrow\mathcal{E}}\begin{bmatrix} 4\\1 \end{bmatrix}$. You should get your answers in the first part.

- 20. Let $\mathbb{P}_2 \xrightarrow{T} \mathbb{R}^2$ be the linear transformation defined by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(-1) \\ \mathbf{p}(2) \end{bmatrix}$.
 - (a) Compute T(1), T(t), and $T(t^2)$. Let $\mathcal{E} = \{1, t, t^2\}$ be the standard basis of \mathbb{P}_2 . Using the coordinate mapping $\mathbb{P}_2 \stackrel{[\]_{\mathcal{E}}}{\to} \mathbb{R}^3$, we can view T as a linear transformation $\mathbb{R}^3 \stackrel{S}{\to} \mathbb{R}^2$ defined by $S(\mathbf{x}) = A\mathbf{x}$.
 - (b) Write down the matrix A. Hint: the columns of A are your answers in (a).
 - (c) Use the matrix A to check that $S([t^2]_{\mathcal{E}}) = T(t^2)$.
 - (d) Compute a basis for Nul A.
 - (e) Use your answer in (d) to write down a basis for the kernel of T.
- 21. Write down the equation that defines what it means for \mathbf{x} to be an eigenvector of matrix A with associated eigenvalue λ .
- 22. Show that $\begin{bmatrix} 7 \\ -2 \end{bmatrix}$ is an eigenvector of $\begin{bmatrix} 1 & 7 \\ 0 & -1 \end{bmatrix}$ and compute its eigenvalue λ .
- 23. Suppose $\lambda = 6$ is an eigenvalue for the matrix

$$A = \begin{bmatrix} 3 & 0 & 2 \\ -6 & 6 & 4 \\ -3 & 0 & 8 \end{bmatrix}.$$

Compute a basis for the associated eigenspace.

- 24. Let $A = \begin{bmatrix} -1 & 4 \\ -2 & 5 \end{bmatrix}$.
 - (a) Compute the eigenvalues λ_1, λ_2 of A.
 - (b) Compute the associated eigenvectors $\mathbf{v}_1, \mathbf{v}_2$ of A.
- 25. Is it possible for a nonhomogeneous system of seven equations in six unknowns to have a unique solution for some right-hand side of constants? Is it possible for such a system to have a unique solution for every right-hand side? Justify your answer.
- 26. Determine whether each subset of vectors is a subspace of a vector space. If so, find the dimension of the subspace and identify the vector space.

(a) span
$$\left\{ \begin{bmatrix} 2\\0\\-1 \end{bmatrix} \right\}$$
, (b) Row A , (c) Null A^T , (d) $\left\{ \begin{bmatrix} 4a+3b\\a\\b \end{bmatrix} : a,b \in \mathbb{R} \right\}$,

- (e) $\{y(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t) : c_1, c_2 \in \mathbb{R}\}$
- 27. Define $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$ where A is a 3×3 matrix with eigenvalues 5 and -2. Does there exist a basis \mathcal{B} for \mathbb{R}^3 such that the \mathcal{B} -matrix for T is a diagonal matrix? Justify your answer.