Key Definitions: Sections 2.1-2.4

- The identity matrix I_{n} is
- A diagonal matrix is
- A zero matrix is
- The transpose of a matrix A is
- An elementary matrix is
- A partitioned or block matrix A is

Section 2.1

Theorem 1 Properties of Matrix Addition and Scalar Multiplication Let A, B, and C be matrices of the same size, $m \times n$, and let r and s be scalars.
(a) $A+B=$
(d) $r(A+B)=$
(b) $(A+B)+C=$
(e) $(r+s) A=$
(c) $A+0=$
(f) $r(s A)=$

Theorem 2 Properties of Matrix Multiplication Let A, B, and C be matrices and r be a scalar such that the sums and products below are defined. Then,
(a) $A(B C)=$
(b) $A(B+C)=$
(c) $(B+C) A=$
(d) $r(A B)=$
(e) $I_{m} A=$

Theorem 3 Transpose Properties Let A and B be matrices whose sizes are appropriate for the following sums and products.
(a) $\left(A^{T}\right)^{T}=$
(c) For any scalar $r,(r A)^{T}=$
(b) $(A+B)^{T}=$
(d) $(A B)^{T}=$

Note: The transpose of a product of matrices equals the product of their transposes in reverse order.

Section 2.2

Theorem 42×2 Inverses Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then A is invertible, and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] .
$$

If $a d-b c=0$, then A is not invertible (is singular).
The quantity $a d-b c$ is called the determinant of A.
Thus, $a 2 \times 2$ matrix is invertible if and only if $\operatorname{det} A \neq 0$.

Theorem 5 Matrix Equation Solutions and Inverses If A is an invertible $n \times n$ matrix, then for each $\mathbf{b} \in \mathbb{R}^{n}$, the equation $A \mathbf{x}=\mathbf{b}$ has the unique solution, $\mathbf{x}=A^{-1} \mathbf{b}$.

Theorem 6 Properties of Inverses

(a) If A is an invertible matrix, then A^{-1} is invertible and

$$
\left(A^{-1}\right)^{-1}=
$$

\qquad
(b) If A and B are $n \times n$ invertible matrices, then $A B$ is also invertible. The inverse of $A B$ is the product of the inverses of A and B in reverse order. That is,

$$
(A B)^{-1}=
$$

(c) If A is an invertible matrix, then A^{T} is also invertible. The inverse of A^{T} is the transpose of A^{-1}. That is,

$$
\left(A^{T}\right)^{-1}=
$$

Theorem 7 An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}, and in this case, any sequence of elementary row operations that reduces A to I_{n} also transforms I_{n} to A^{-1}.

Section 2.3

Theorem 8 The Invertible Matrix Theorem Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.
(a) A is an invertible matrix.
(b) A is row equivalent to the $n \times n$ \qquad matrix.
(c) A has \qquad postions.
(d) The equation $A \mathbf{x}=\mathbf{0}$ has only the \qquad solution.
(e) The columns of A form a linearly \qquad set.
(f) The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is \qquad .
(g) The equation $A \mathbf{x}=\mathbf{b}$ has \qquad solution for each \mathbf{b} in \mathbb{R}^{n}.
(h) The columns of A \qquad \mathbb{R}^{n}.
(i) The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} \qquad \mathbb{R}^{n}.
(j) There is an $n \times n$ matrix C such that $C A=$ \qquad .
(k) There is an $n \times n$ matrix D such that $A D=$ \qquad
(l) A^{T} is an \qquad matrix.

Theorem 9 Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be a linear transformation and let A be the standard matrix for T. Then, T is invertible if and only if A is an invertible matrix, and the linear transformation S given by $S(\mathbf{x})=A^{-1} \mathbf{x}$ is the unique function such that

$$
\begin{aligned}
& A^{-1}(A \mathbf{x})=S(T(\mathbf{x}))=\mathbf{x} \text { for all } \mathbf{x} \in \mathbb{R}^{n} \\
& A\left(A^{-1} \mathbf{x}\right)=T(S(\mathbf{x}))=\mathbf{x} \text { for all } \mathbf{x} \in \mathbb{R}^{n}
\end{aligned}
$$

where $S=T^{-1}$ is the inverse of T.

Supplemental Practice Problems:

1. Compute the inverse of $A=\left[\begin{array}{rrr}1 & 0 & 5 \\ 4 & 2 & 20 \\ 0 & 4 & -5\end{array}\right]$ using the inverse algorithm, $[A \quad I] \sim\left[\begin{array}{ll}I & A^{-1}\end{array}\right]$.
2. Find the inverse of the following matrices:
(a) $\left[\begin{array}{rrr}-1 & 2 & 2 \\ 2 & -4 & -3 \\ -1 & 1 & 4\end{array}\right]$
(b) $\left[\begin{array}{rrr}5 & 5 & 2 \\ 4 & 5 & 2 \\ -2 & 1 & 0\end{array}\right]$
3. Consider the matrix $A=\left[\begin{array}{rrr}2 & 3 & 1 \\ -2 & 5 & 2 \\ 0 & 3 & 1\end{array}\right]$
(a) Show that $A^{-1}=\left[\begin{array}{rrr}1 / 2 & 0 & -1 / 2 \\ -1 & -1 & 3 \\ 3 & 3 & -8\end{array}\right]$.
(b) Using matrix A or A^{-1}, determine the number of pivots of A and whether the columns of A are linearly independent or dependent.
(c) Using matrix A or A^{-1}, find all solutions, if any, to the matrix equation $A \mathbf{x}=\left[\begin{array}{l}5 \\ 2 \\ 3\end{array}\right]$.
4. Suppose that an $n \times n$ matrix has a column which is a multiple of another column. Either give an example of an invertible matrix of this type or explain why such a matrix is not invertible.
5. Consider the following matrices

$$
A=\left[\begin{array}{rrr}
2 & -1 & 4 \\
-3 & 2 & 1
\end{array}\right], \quad B=\left[\begin{array}{rr}
1 & -2 \\
2 & 5 \\
3 & 3
\end{array}\right], \quad\left[\begin{array}{rr}
2 & -5 \\
-1 & 3
\end{array}\right]
$$

Calculate (if possible) each of the following matrix products:
(a) AB
(c) AC
(b) BA
(d) CA
6. Let R be the rectangle with vertices $(-2,-1),(-2,2),(3,2),(3,-1)$. Consider the linear transformation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ given by $T\left(x_{1}, x_{2}\right)=\left(4 x_{1}-3 x_{2},-x_{1}+x_{2}\right)$.
(a) Find the standard matrix A of the linear transformation T, and sketch the image of the rectangle R under T.
(b) Find the standard matrix A^{-1} corresponding to the inverse of T and sketch the image of the rectangle R under T^{-1}.
7. Let R be the rectangle with vertices $(-2,-1),(-2,2),(3,2),(3,-1)$. Consider the linear transformation $S: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ which maps the unit square to the parallelogram pictured below.

(a) Find the standard matrix B associated to S and sketch the image of the rectangle R under S.
(b) Find the matrix B^{-1} associated to the inverse of S and sketch the image of the rectangle R under S^{-1}.
8. Consider the matrices $A=\left[\begin{array}{ll}3 & 5 \\ 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{rr}1 & b \\ c & -1\end{array}\right]$ where b and c are unknowns. Find values of b and c such that $A B=B A$.
9. Given $\left[\begin{array}{cc}A & B \\ 0 & I\end{array}\right]\left[\begin{array}{ccc}X & Y & Z \\ 0 & 0 & I\end{array}\right]=\left[\begin{array}{ccc}I & 0 & 0 \\ 0 & 0 & I\end{array}\right]$. Find formulas for X, Y and Z in terms of A, B and C. Justify your calculations. That is, in some cases, you may need to make assumptions about the size of a matrix in order to produce a formula.
10. Let $A=\left[\begin{array}{cc}B & 0 \\ 0 & C\end{array}\right]$ where B and C are square blocks. Show that A is invertible if and only if both B and C are invertible.

