Key Definitions: Sections 2.1-2.4

- The identity matrix I_n is
- A diagonal matrix is
- A zero matrix is
- The transpose of a matrix A is
- An elementary matrix is
- A partitioned or block matrix A is

Section 2.1

Theorem 1 Properties of Matrix Addition and Scalar Multiplication Let A, B, and C be matrices of the same size, $m \times n$, and let r and s be scalars.

(a) A + B =	$(d) \ r(A+B) =$
(b) (A+B) + C =	$(e) \ (r+s)A =$
(c) A + 0 =	$(f) \ r(sA) =$

Theorem 2 Properties of Matrix Multiplication Let A, B, and C be matrices and r be a scalar such that the sums and products below are defined. Then,

- (a) A(BC) =(b) A(B+C) =
- (c) (B+C)A =
- $(d) \ r(AB) =$
- (e) $I_m A =$

Theorem 3 Transpose Properties Let A and B be matrices whose sizes are appropriate for the following sums and products.

(a) $(A^T)^T =$ (c) For any scalar r, $(rA)^T =$ (b) $(A+B)^T =$ (d) $(AB)^T =$

Note: The transpose of a product of matrices equals the product of their transposes in reverse order.

Theorem 4 2 × 2 **Inverses** Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then A is invertible, and $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$

If ad - bc = 0, then A is not invertible (is singular).

The quantity ad - bc is called the **determinant** of A.

Thus, a 2×2 matrix is invertible if and only if det $A \neq 0$.

Theorem 5 Matrix Equation Solutions and Inverses If A is an invertible $n \times n$ matrix, then for each $\mathbf{b} \in \mathbb{R}^n$, the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution, $\mathbf{x} = A^{-1}\mathbf{b}$.

Theorem 6 Properties of Inverses

(a) If A is an invertible matrix, then A^{-1} is invertible and

 $(A^{-1})^{-1} =$ _____

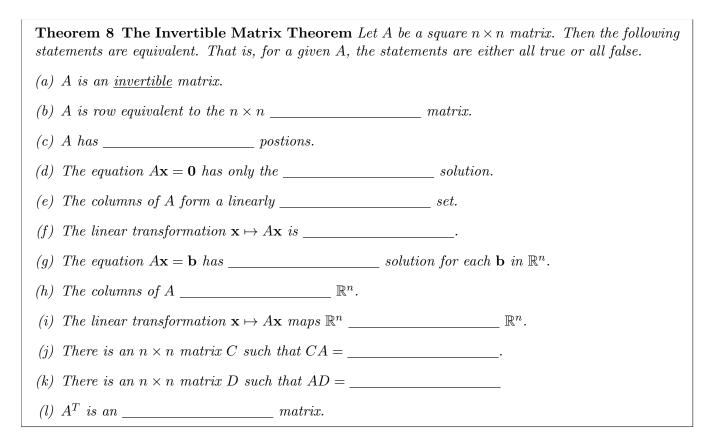
(b) If A and B are $n \times n$ invertible matrices, then AB is also invertible. The inverse of AB is the product of the inverses of A and B in reverse order. That is,

 $(AB)^{-1} =$ _____

(c) If A is an invertible matrix, then A^T is also invertible. The inverse of A^T is the transpose of A^{-1} . That is, $(A^T)^{-1} = _$ _____

Theorem 7 An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n , and in this case,

any sequence of elementary row operations that reduces A to I_n also transforms I_n to A^{-1} .



Theorem 9 Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then, T is invertible if and only if A is an invertible matrix, and the linear transformation S given by $S(\mathbf{x}) = A^{-1}\mathbf{x}$ is the unique function such that

 $A^{-1}(A\mathbf{x}) = S(T(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \in \mathbb{R}^n$

$$A(A^{-1}\mathbf{x}) = T(S(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \in \mathbb{R}^n$$

where $S = T^{-1}$ is the inverse of T.

Supplemental Practice Problems:

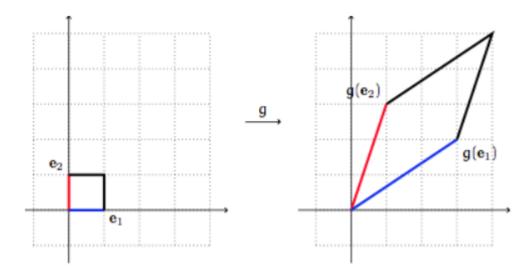
- 1. Compute the inverse of $A = \begin{bmatrix} 1 & 0 & 5 \\ 4 & 2 & 20 \\ 0 & 4 & -5 \end{bmatrix}$ using the inverse algorithm, $\begin{bmatrix} A & I \end{bmatrix} \sim \begin{bmatrix} I & A^{-1} \end{bmatrix}$.
- 2. Find the inverse of the following matrices:
 - (a) $\begin{bmatrix} -1 & 2 & 2 \\ 2 & -4 & -3 \\ -1 & 1 & 4 \end{bmatrix}$ (b) $\begin{bmatrix} 5 & 5 & 2 \\ 4 & 5 & 2 \\ -2 & 1 & 0 \end{bmatrix}$
- 3. Consider the matrix $A = \begin{bmatrix} 2 & 3 & 1 \\ -2 & 5 & 2 \\ 0 & 3 & 1 \end{bmatrix}$
 - (a) Show that $A^{-1} = \begin{bmatrix} 1/2 & 0 & -1/2 \\ -1 & -1 & 3 \\ 3 & 3 & -8 \end{bmatrix}$.
 - (b) Using matrix A or A^{-1} , determine the number of pivots of A and whether the columns of A are linearly independent or dependent.
 - (c) Using matrix A or A^{-1} , find all solutions, if any, to the matrix equation $A\mathbf{x} = \begin{bmatrix} 5\\2\\3 \end{bmatrix}$.
- 4. Suppose that an $n \times n$ matrix has a column which is a multiple of another column. Either give an example of an invertible matrix of this type or explain why such a matrix is not invertible.
- 5. Consider the following matrices

$$A = \begin{bmatrix} 2 & -1 & 4 \\ -3 & 2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -2 \\ 2 & 5 \\ 3 & 3 \end{bmatrix}, \quad \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix}$$

Calculate (if possible) each of the following matrix products:

- (a) AB (c) AC
- (b) BA (d) CA

- 6. Let R be the rectangle with vertices (-2, -1), (-2, 2), (3, 2), (3, -1). Consider the linear transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ given by $T(x_1, x_2) = (4x_1 3x_2, -x_1 + x_2)$.
 - (a) Find the standard matrix A of the linear transformation T, and sketch the image of the rectangle R under T.
 - (b) Find the standard matrix A^{-1} corresponding to the inverse of T and sketch the image of the rectangle R under T^{-1} .
- 7. Let R be the rectangle with vertices (-2, -1), (-2, 2), (3, 2), (3, -1). Consider the linear transformation $S : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ which maps the unit square to the parallelogram pictured below.



- (a) Find the standard matrix B associated to S and sketch the image of the rectangle R under S.
- (b) Find the matrix B^{-1} associated to the inverse of S and sketch the image of the rectangle R under S^{-1} .
- 8. Consider the matrices $A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & b \\ c & -1 \end{bmatrix}$ where b and c are unknowns. Find values of b and c such that AB = BA.
- 9. Given $\begin{bmatrix} A & B \\ 0 & I \end{bmatrix} \begin{bmatrix} X & Y & Z \\ 0 & 0 & I \end{bmatrix} = \begin{bmatrix} I & 0 & 0 \\ 0 & 0 & I \end{bmatrix}$. Find formulas for X, Y and Z in terms of A, B and C. Justify your calculations. That is, in some cases, you may need to make assumptions about the size of a matrix in order to produce a formula.
- 10. Let $A = \begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix}$ where *B* and *C* are square blocks. Show that *A* is invertible if and only if both *B* and *C* are invertible.