Key Definitions: Sections 1.1-1.9

- A linear combination of the vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is
- $span\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is
- For $A_{m \times n}$ and $\mathbf{x} \in \mathbb{R}^n$, $A\mathbf{x}$ is

- The homogeneous matrix equation is
- The nonhomogeneous matrix equation is
- For a matrix to be in reduced row echelon form (RREF), the following four conditions must be met:
 - (a)
 - (b)

 - (c)
 - (d)
- The set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is linearly dependent if
- The set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is linearly independent if
- A linear transformation is a function $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ that preserves
 - (i)
 - (ii)
- The standard matrix for the linear transformation, $T:\mathbb{R}^n\longrightarrow\mathbb{R}^m$ is
- A mapping $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is onto \mathbb{R}^m if
- A mapping $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is one-to-one if

Theorem 1 Uniqueness of Reduced Row Echelon Form:

Each matrix is row equivalent to one and only one reduced row echelon form matrix.

Theorem 2 Existence and Uniqueness A linear system is consistent if and only if the augmented column does not have a pivot position. A solution is unique if an only if there are no free variables.

Theorem 3 Equivalent Descriptions If A is an $m \times n$ matrix with columns a_1, a_2, \ldots, a_n and if $b \in \mathbb{R}^m$,

the matrix equation $A \boldsymbol{x} = \boldsymbol{b}$

has the same solution set as the

the vector equation $x_1 a_1 + x_2 a_2 + \ldots + x_n a_n = b$

which has the same solution set as the linear system of m equations in n unknowns/variables whose

augmented matrix is $[\mathbf{a}_1 \quad \mathbf{a}_2 \quad \dots \quad \mathbf{a}_n \quad \mathbf{b}].$

Theorem 4 Logically Equivalent Statements

Let A be an $m \times n$ matrix. Then, the following statements are logically equivalent (i.e the statements are all true or all false).

- (a) For each $\mathbf{b} \in \mathbb{R}^m$, the matrix equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- (b) Each $\mathbf{b} \in \mathbb{R}^m$ is a linear combination of the columns of A.
- (c) The columns of A span \mathbb{R}^m .
- (d) A has a pivot position in every row.

Theorem 5 Linearity of Matrix Multiplication

If A is an $m \times n$ matrix, **u** and **v** are vectors in \mathbb{R}^n , and c is a scalar, then

- (a) $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v};$
- (b) $A(c\mathbf{u}) = c(A\mathbf{u}).$

Theorem 6 Parametric Vector Form

Suppose the matrix equation $A\mathbf{x} = \mathbf{b}$ is consistent for a given \mathbf{b} and let \mathbf{p} be a solution. Then, the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form

 $\mathbf{w}=\mathbf{p}+\mathbf{v}_h,$

where \mathbf{v}_h is any solution of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

Theorem 7 A set $S = {\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.

Theorem 8 If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\} \in \mathbb{R}^m$ is linearly dependent if n > m.

Theorem 9 If a set $S = {\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n} \in \mathbb{R}^m$ contains the zero vector, then the set is linearly dependent.

Theorem 10 Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation. Then there exists a **unique** matrix A such that

$$T(\mathbf{x}) = A\mathbf{x} \qquad \forall \ \mathbf{x} \in \mathbb{R}^n$$

Moreover, A is the $m \times n$ matrix whose jth column is the vector $T(\mathbf{e_j})$, where $\mathbf{e_j}$ is the jth column of the identity matrix in \mathbb{R}^n :

$$A = \begin{bmatrix} T(\mathbf{e_1}) & T(\mathbf{e_2}) & \dots & T(\mathbf{e_n}) \end{bmatrix}$$

called the standard matrix for the linear transformation T.

Theorem 11 Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation. Then T is <u>1-to-1</u> if and only if the equation $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution, $\mathbf{x} = \mathbf{0}$.

Theorem 12 Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation, and let A be the standard matrix for T. *Then:*

(a) T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m .

(b) T is 1-to-1 if and only if the columns of A are linearly independent.

Supplemental Practice Problems:

1) Linearly (In)Dependent Sets

- (a) Give an example of two vectors in \mathbb{R}^2 that are linearly dependent.
- (b) Give an example of two vectors in \mathbb{R}^2 that are linearly independent.
- (c) Give an example of three vectors in \mathbb{R}^2 that are linearly dependent.
- (d) Give an example of three vectors in \mathbb{R}^2 that are linearly independent.
- (e) Give an example of three vectors in \mathbb{R}^3 that are linearly dependent.
- (f) Give an example of three vectors in \mathbb{R}^3 that are linearly independent.

2) Find all solutions, if any, to the following systems of equations.

(a)

$$\begin{cases} x_1 - 3x_2 = -3\\ -x_1 + x_2 = -1\\ 2x_1 - 5x_2 = -4 \end{cases}$$

(b)

$$\begin{cases} -2x_1 - x_2 + 3x_3 = 5\\ 3x_1 + 2x_2 - 5x_3 = -2 \end{cases}$$

3) Find all solutions, if any, to the following matrix equations.

(a)
$$\begin{bmatrix} 2 & -4 & 10 \\ 3 & 1 & 1 \\ -2 & 3 & -8 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 6 \\ 5 \\ 4 \end{bmatrix}$$

(b) $\begin{bmatrix} 1 & 2 & 0 & 4 \\ 0 & 1 & -1 & 2 \\ -1 & 0 & -1 & -1 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

4) Consider the matrix equation $\begin{bmatrix} 3 & -1 \\ 2 & 2 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$.

- (a) Show that the equation has a unique solution and find that solution.
- (b) Write the corresponding system of equations and graph the two corresponding lines in \mathbb{R}^2 . Geometrically, how do you interpret your solution from (a)?
- (c) Write the corresponding linear combination problem. Verify that your solution from (a) gives the correct linear combination.

5) Consider the matrix equation $\begin{bmatrix} -2 & 1 \\ 6 & -3 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

- (a) Show that the system has no solution.
- (b) Graph the lines of the corresponding system of equations. How does this graph relate to the fact that there is no solution?
- (c) Graph the vector $\mathbf{b} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ along with the column vectors, \mathbf{a}_1 and \mathbf{a}_2 , of the matrix. How can you interpret the fact that there is no solution in terms of linear combinations?

6) Consider the following vectors in \mathbb{R}^3 .

$$\mathbf{u} = \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}, \qquad \mathbf{v} = \begin{bmatrix} 1\\ 3\\ -2 \end{bmatrix}, \qquad \mathbf{w} = \begin{bmatrix} 2\\ -3\\ 1 \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} -1\\ -2\\ 1 \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} 2\\ 5\\ -3 \end{bmatrix}$$

For each of the sets below, determine whether the set is linearly dependent or independent. If the set is linearly dependent, give a dependency relation between the vectors.

- (a) $\{\mathbf{u}, \mathbf{v}\}$ (c) $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$
- (b) $\{\mathbf{u}, \mathbf{x}\}$ (d) $\{\mathbf{u}, \mathbf{v}, \mathbf{y}\}$
- 7) Find all solutions, if any, to the following linear combination (or vector equation) problems.

(a) Determine if
$$\mathbf{w} = \begin{bmatrix} 5\\ 6\\ -12 \end{bmatrix}$$
 is a linear combination of $\mathbf{v}_1 = \begin{bmatrix} 2\\ 1\\ -2 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 3\\ -2\\ 4 \end{bmatrix}$.
(b) Determine if $\mathbf{w} = \begin{bmatrix} -1\\ 13 \end{bmatrix}$ is a linear combination of $\mathbf{v}_1 = \begin{bmatrix} 1\\ 3 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -2\\ 2 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 5\\ -1 \end{bmatrix}$.

- 8) Homogeneneous, $A\mathbf{x} = \mathbf{0}$ and Nonhomogeneous Systems, $A\mathbf{x} = \mathbf{b}$ where $\mathbf{b} \neq \mathbf{0}$
 - (a) What condition(s) on the row echelon form of the matrix A guarantee(s) that the homogeneous equation $A\mathbf{x} = \mathbf{0}$ has infinitely many solutions?
 - (b) What condition(s) on the row echelon form of the matrix A guarantee(s) that the nonhomogeneous equation $A\mathbf{x} = \mathbf{b}$ always has at least one solution no matter the entries of **b**?
 - (c) What condition(s) of the numbers of rows and columns of A always give infinitely many solutions to the homogeneous problem?
 - (d) What condition(s) on the numbers of rows and columns of A guarantee that there will be lots of vectors **b** for which $A\mathbf{x} = \mathbf{b}$ is inconsistent?
- 9) Consider the homogeneous matrix equation $A\mathbf{x} = \mathbf{0}$ with the matrix A and its reduced row echelon form given below:

Γ	1	2	0	1	1		1	2	0	1	1]	
	2	4	1	4	1	$\sim \cdots \sim$	0	0	1	2	-1	
	-2	-4	0	-2	-2	$\sim \cdots \sim$	0	0	0	0	0	

- (a) Find and express the solution, if any, to this system in linear combination form.
- (b) Are the columns of A linearly independent or dependent?
- (c) For what $\mathbf{b} \neq \mathbf{0} \in \mathbb{R}^3$, does a solution exist? Find a solution to such a nonhomogeneous matrix equation.
- 10) Suppose $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a linearly dependent set in \mathbb{R}^n . Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation. Explain why $\{T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3)\}$ must be linearly dependent in \mathbb{R}^m .