Math1100 Final Review Problems

From all sections covered in class in chapters 9-14
Fall, 2019

1. Compute the following limits.

(a) \[\lim_{x \to \infty} \frac{3x^2 + 1}{5x^2 + x + 5} = \lim_{x \to \infty} \frac{3x^2}{5x^2} = \frac{3}{5} \]

(b) \[\lim_{x \to \infty} \frac{3x + 1}{5x^2 + x + 5} = \lim_{x \to \infty} \frac{3x}{5x^2} = \lim_{x \to \infty} \frac{3}{5x} = 0 \]

(c) \[\lim_{x \to \infty} \frac{3x^3 + 1}{5x^2 + x + 5} = \lim_{x \to \infty} \frac{3x^3}{5x^2} = \lim_{x \to \infty} \frac{3x}{5} = \infty \text{ or DNE} \]

(d) \[\lim_{x \to 5} \frac{3x^2 - 6x - 45}{2x^2 - 9x - 5} = \lim_{x \to 5} \frac{(x-5)(3x+9)}{(x-5)(2x+1)} = \lim_{x \to 5} \frac{3x+9}{2x+1} = \frac{24}{11} \]

\[\frac{0}{0} \text{ case} \]

(e) \[\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 + 3x - 4} = \lim_{x \to 1} \frac{(x-1)(x+2)}{(x-1)(x+4)} = \lim_{x \to 1} \frac{x+2}{x+4} = \frac{3}{5} \]

\[\frac{0}{0} \text{ case} \]

(f) \[\lim_{x \to 2} \frac{x + 9}{x^2 - 4} = \text{DNE} \]

\[\frac{1}{0} \text{ case} \]

(g) \[\lim_{x \to 2} \frac{x^2 - 4}{x + 9} = \frac{0}{11} = 0 \]

(h) \[\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 + 4x - 5} = \lim_{x \to 1} \frac{(x-1)(x+2)}{(x-1)(x+5)} = \lim_{x \to 1} \frac{x+2}{x+5} = \frac{3}{6} = \frac{1}{2} \]

\[\frac{0}{0} \text{ case} \]

(i) \[\lim_{x \to \infty} \frac{e^{x^2} - 2x^3}{14x - 3x^3} = \lim_{x \to \infty} -\frac{2x}{-3x^3} = \frac{2}{3} \]

2. Find the derivative, \(\frac{dy}{dx} \) of the following functions.

(a) \(y = x^4 - 5x^3 + 7 - 3x + \ln x \)
\(\frac{dy}{dx} = y' = 4x^3 + 15x^2 - 3x(\ln x) + \frac{1}{x} \)

(b) \(y = \frac{x^2 - 6x + 9}{\ln x + 5x} \)
\(\frac{dy}{dx} = y' = \frac{(\ln x + 5x)(2x - 6) + (x^2 - 6x + 9)(\frac{1}{x} + 5)}{(\ln x + 5x)^2} \)

(c) \(y = (x - 7x^3)^9(e^{x^3 + 3x}) \)
\(y' = (x - 7x^3)^9(e^{x^3 + 3x}(2x + 3)) + 9(x - 7x^3)^8(1 - 3x^4)(e^{x^3 + 3x}) \)

(d) \(\sqrt{x^2 - 9x} = e^{y} + \frac{1}{5}x^2 \)
\(\frac{dy}{dx} = \frac{2x - 9}{2\sqrt{x^2 - 9x}} - \frac{2}{5}x \)

(e) \(x^3 + 8 = \ln(xy) \)
\(\frac{dy}{dx} = \frac{3x^2 - x}{x(y + x\frac{dy}{dx})} \)

(f) \(y = \sqrt{5x + \ln(x^2 + x^7)} \)
\(\frac{dy}{dx} = \frac{3x^3 y - y^3}{x^2 + x^7} \)

(g) \(y = 3e^{x} + e^{-x} + x^4e^{x} \)
\(y' = 3x^4(\ln 3)(4x^3) + e^{x^4}(4x^3) + 4e^x e^{-1} \)

(h) \(y = \frac{(7x^4 + e^x + 2x)^7}{\sqrt{2x + x^5}} \)
\(y' = \frac{3(2x + x^5)^2}{(7x^4 + e^x + 2x)^6} \)

\(28x^3 + e^x(3x^2 + 2) - (7x^4 + e^x + 2x)^7 \left(\frac{1}{2}(2x + x^5)^2 \right) \)
3. Find the equation of the tangent line for the given curve at the indicated point.

(a) \(x^3 + xy + 4 = 0 \) at \((2, -6)\)

\[
\text{derivative: } 3x^2 + y + x y' = 0 \Rightarrow y' = \frac{-3x^2 - y}{x}
\]

\[
m = \frac{-3}{2}, \quad (2, -6)
\]

line: \(y + 6 = -\frac{3}{2}(x - 2) \) \(\Rightarrow\) \(y = -3x \)

(b) \((x + 2y)e^{xy} = xy^2\) at \((0, 0)\)

\[
\text{derivative: } (1+2y')e^{xy} + (x+2y)e^{xy}(y + xy') = y^2 + x(2y)y'
\]

plug in \((0,0)\) to derivative: \((1+2y')e^{0} + (0+0)e^{0}(0+0) = 0+0
\]

\[
\Rightarrow 1+2y' = 0 \quad \Rightarrow y' = -\frac{1}{2} = \text{slope}
\]

pt \((0,0)\), \(m = \frac{-1}{2} \)

line: \(y - 0 = -\frac{1}{2}(x-0) \) \(\Rightarrow\) \(y = -\frac{1}{2}x \)

(c) \(3x^2 - 4xy + 2y^3 = 2x + 16\) at \((0, 2)\)

\[
\text{derivative: } 6x(4y+4xy') + 6y^2y' = 2
\]

plug in \((0,2)\): \(6(0) - (4(2) + 0(y')) + 6(2)^3y' = 2
\]

\[\Rightarrow -8 + 24y' = 2 \quad \Rightarrow y' = \frac{5}{12} = \text{slope}\]

pt \((0,2)\), slope \(m = \frac{5}{12} \)

\(\Rightarrow\) line: \(y = \frac{5}{12}x + 2 \)

(d) \(f(x) = x^2 - 3x\) at \(x = 2\)

\[
\text{derivative: } f'(x) = 2x - 3 \quad \text{slope: } \quad f'(2) = 2(2) - 3 = 1 = m
\]

pt: \((2, -2)\), \(f(2) = 2^2 - 3(2) = -2
\]

\(\Rightarrow\) line is \(y - (-2) = 1(x-2) \) \(\Rightarrow\) \(y = x - 4 \)

(e) \(f(x) = x^2 - 3x\) at \(x = 1\)

(same fn as (d)) \(f'(x) = 2x - 3
\]

\[m = \text{slope} = f'(1) = 2(1) - 3 = -1\]

pt: \((1, -2)\), \(f(1) = 1^2 - 3(1) = -2
\]

\(\Rightarrow\) line is \(y + 2 = -1(x-1) \) \(\Rightarrow\) \(y = -x - 1 \)
4. Find \(f^{(4)}(x) \) if \(f(x) = \frac{1}{x^2} + 7x^3 - e^x + 5x \).
\[
\begin{align*}
 f'(x) &= -2x^{-3} + 21x^2 - e^x + 5 \\
 f''(x) &= 6x^{-4} + 42x - e^x \\
 f'''(x) &= -24x^{-5} + 42 - e^x \\
 f^{(4)}(x) &= 120x^{-6} - e^x
\end{align*}
\]

5. Find the area between the two given curves.

(a) \(y = 6 - x^2 \) and \(y = x \)

\[
\text{Intersection points:} \\
\begin{align*}
 x &= 6 - x^2 \\
 x^2 + x - 6 &= 0 \\
 (x+3)(x-2) &= 0 \\
 x &= -3, 2
\end{align*}
\]
\[
A = \int_{-3}^{2} ((6 - x^2) - x) \, dx = \left[(6x - \frac{x^3}{3} - \frac{x^2}{2}) \right]_{-3}^{2} = (6(2) - \frac{8}{3} - 2) - (-18 + 9 - \frac{9}{2}) = \frac{125}{6}
\]

(b) \(y = 4x + 3 \) and \(y = x^2 + 3 \)

\[
\text{Intersection point:} \\
4x + 3 = x^2 + 3 \\
\begin{align*}
 x^2 - 4x &= 0 \\
 x(x-4) &= 0 \\
 x &= 0, 4
\end{align*}
\]
\[
A = \int_{0}^{4} (4x+3-(x^2+3)) \, dx = \int_{0}^{4} (4x-x^2) \, dx = \left[2x^2 - \frac{x^3}{3} \right]_{0}^{4} = 2(16) - \frac{64}{3} - 0 = \frac{32}{3}
\]

(c) \(y = 3x + 2 \) and \(y = x^2 + 2 \)

\[
\text{Intersection point:} \\
3x + 2 = x^2 + 2 \\
\begin{align*}
 3x &= x^2 \\
 x^2 - 3x &= 0 \\
 x(x-3) &= 0 \\
 x &= 0, 3
\end{align*}
\]
\[
A = \int_{0}^{3} (3x+2-(x^2+2)) \, dx = \int_{0}^{3} (3x-x^2) \, dx = \left[\frac{3x^2}{2} - \frac{x^3}{3} \right]_{0}^{3} = (\frac{27}{2} - 9) - 0 = \frac{9}{2}
\]
5. Find the area between the two given curves.
(d) \(y = 8 - x^2 \) and \(y = x^2 \)

\[
A = \int_{-2}^{2} (8 - x^2 - x^2) \, dx = \int_{-2}^{2} (8 - 2x^2) \, dx = \left[8x - \frac{2}{3}x^3 \right]_{-2}^{2} = \left(16 - \frac{16}{3} \right) - \left(-16 + \frac{16}{3} \right) = 32 - \frac{32}{3} = \frac{64}{3}
\]

6. Given the function \(f(x, y) = \frac{7x - 4y^2}{\sqrt{5x}} \)
(a) State the domain of the function.
\[x > 0, \ y \in \mathbb{R} \]
(b) Evaluate the function at \((2,1)\).
\[
f(2,1) = \frac{7(2) - 4(1^2)}{\sqrt{5(2)}} = \frac{14 - 4}{\sqrt{10}} = \frac{10}{\sqrt{10}} = \frac{10\sqrt{10}}{10} = \sqrt{10}
\]

7. The cost of producing \(x \) microwave ovens is \(C(x) = 0.01x^2 + 20x + 300 \) dollars, and the revenue function for the product is \(R(x) = 164x \).
(a) What is the profit function?
\[
\pi = R - C = 164x - (0.01x^2 + 20x + 300) = -0.01x^2 + 144x - 300 = \pi(x)
\]
(b) How many microwave ovens should be sold to maximize profit?
\[
\pi'(x) = -0.02x + 144 = 0
\]
\[
x = \frac{144}{0.02} = \frac{14400}{2} = 7200
\]
(c) What is the maximum profit?
\[
\pi(7200) = -0.01(7200^2) + 144(7200) - 300 = \$518100
\]
8. Compute the following integrals.

(a) \(\int (2x^2 - x^4 - 5x^3 + 9) \, dx \)
\[= \frac{2x^3}{3} - \frac{x^5}{5} - \frac{5x^4}{4} + 9x + C \]

(b) \(\int \left(\frac{5}{x^2} + e^x - \frac{2}{x} \right) \, dx \)
\[= \left(\frac{5}{x} + e^x - 2 \ln |x| \right) + C = \frac{5}{x} + e^x - 2 \ln |x| + C \]

(c) \(\int 3xe^{x^2+5} \, dx \)
\[= 3 \left(\frac{1}{2} \right) \int e^u \, du \]
\[u = x^2 + 5 \]
\[du = 2x \, dx \]
\[\frac{1}{2} \, du = x \, dx \]
\[= \frac{3}{2} e^{x+5} + C \]

(d) \(\int \frac{x^3 + 4x - x^{-1}}{x} \, dx \)
\[= \int (x^2 + 4 - x^{-2}) \, dx = \frac{x^3}{3} + 4x - \frac{x^{-1}}{-1} + C \]
\[= \frac{1}{3}x^3 + 4x + \frac{1}{x} + C \]

(e) \(\int 100e^{-0.5x} \, dx \)
\[u = -0.5x \]
\[du = -0.5 \, dx \]
\[-2du = dx \]
\[= -200 \int e^u \, du \]
\[= -200e^{-0.5x} + C \]

(f) \(\int (3x^2 - 8x + 2)^9(3x - 4) \, dx \)
\[u = 3x^2 - 8x + 2 \]
\[du = (6x - 8) \, dx \]
\[\frac{1}{2} \, du = (3x - 4) \, dx \]
\[= \frac{1}{2} \int u^9 \, du \]
\[= \frac{1}{2} \left(\frac{u^{10}}{10} \right) + C \]
\[= \frac{1}{20} (3x^2 - 8x + 2)^{10} + C \]
(g) \(\int \frac{2x^2}{x^3-1} \, dx \) \\
\[u = x^3 - 1 \] \\
\[du = 3x^2 \, dx \] \\
\[\frac{1}{3} \, du = x^2 \, dx \]

\[\int \frac{1}{u} \, du = \frac{2}{3} \ln |u| + C \]

\[= \frac{2}{3} \ln |x^3 - 1| + C \]

(h) \(\int \frac{-4}{2x-5} \, dx \) \\
\[u = 2x - 5 \] \\
\[du = 2 \, dx \] \\
\[-2 \, du = 4 \, dx \]

\[= -2 \int \frac{1}{u} \, du = -2 \ln |u| + C \]

\[= -2 \ln |2x - 5| + C \]

(i) \(\int (4x - 6x^2) \, dx \)

\[= (2x^2 - 2x^3) \bigg|_1^3 = (2(9) - 2(27)) - (2(1) - 2(1)) \]

\[= 18 - 54 - 0 = -36 \]

(j) \(\int \left(3x^3 + 2x - \frac{5}{x^2} \right) \, dx \)

\[= \left(\frac{3x^4}{4} + x^2 - \frac{5}{x} \right) \bigg|_1^5 \]

\[= \left(\frac{3}{4} - 1 + \frac{5}{x} \right) \bigg|_1^5 \]

\[= \left(\frac{3}{4} (625) + 25 + 1 \right) - \left(\frac{3}{4} + 1 + 5 \right) = 488 \]

(k) \(\int \left(6x^2 + x - \frac{5}{x} \right) \, dx \)

\[= \left(2x^3 - \frac{x^2}{2} + \frac{5}{x} \right) \bigg|_1^4 \]

\[= (2(64) - \frac{16}{2} + \frac{5}{4}) - (2 - \frac{1}{2} + 5) \]

\[= 114.75 \]
(l) \[\int_1^2 (4x^3 + 5x - \frac{6}{x^7}) \, dx = \int_1^2 (4x^3 + 5x - 6x^{-3}) \, dx \]
\[= [(x^4 + \frac{5}{2}x^2 + \frac{3}{x^2})]_1^2 \]
\[= (16 + \frac{5}{2}(4) + \frac{3}{4}) - (1 + \frac{5}{2} + 3) = 20.25\]

(m) \[\int_3^3 \ln x \, dx = 0 \]
(you don't need to do this integral; it asks for area under curve with 0 width, i.e. from \(x=3\) to \(x=3\) \(\Rightarrow\) area is 0)

(n) \[\int_0^3 x(8x^2 + 9)^{-1/2} \, dx \]
\[u = 8x^2 + 9 \]
\[du = 16x \, dx \]
\[\frac{1}{16} \int_{u(0)}^{u(3)} u^{-1/2} \, du \]
\[= \frac{1}{16} \left(\frac{u^{1/2}}{1/2} \right) \bigg|_0^3 \]
\[= \frac{1}{8} \frac{8x^2+9}{9} \bigg|_0^3 = \frac{1}{8} \sqrt{8x^2+9} \bigg|_0^3 = \frac{3}{2} \]

9. For the function \(y = x^3 - 2x^2 + x + 1\), answer the following questions.

(a) Find the horizontal and vertical asymptotes, if there are any.
\[\text{none}\]

(b) Fill in the first derivative sign line and find the min/max points.
\[y' = 3x^2 - 4x + 1 = (3x-1)(x-1) = 0 \quad (\Rightarrow \quad x = \frac{1}{3}, 1)\]
\[\text{min pt: } (\frac{1}{3}, 1) \quad \text{max pt: } (1, 2) \quad \text{min pt: } (\frac{1}{3}, 1) \quad \text{max pt: } (1, 2)\]

(c) Fill in the second derivative sign line and find the inflection points.
\[y'' = 6x-4 = 0 \quad (\Rightarrow \quad x = \frac{2}{3}) \quad y(\frac{2}{3}) = \frac{\frac{4}{3} - \frac{8}{3} + \frac{2}{3} + 1}{2} = \frac{25}{27}\]
\[\text{inflexion pt: } (\frac{2}{3}, \frac{25}{27})\]

(d) Sketch the graph of this function, given all the answers for questions (a) through (c).
10. For the function \(y = x^4 - 2x^3 + x^2 \), answer the following questions.
 (a) Find the horizontal and vertical asymptotes, if there are any.

 (b) Fill in the first derivative sign line and find the min/max points.

\[
y' = 4x^3 - 6x^2 + 2x = 2x(2x^2 - 3x + 1) = 2x(2x-1)(x-1) = 0 \quad x = 0, \frac{1}{2}, 1
\]

\[\text{min pt: } (0, 0), (1, 0)\]

\[\text{max pt: } \left(\frac{1}{2}, \frac{1}{16}\right)\]

(c) Fill in the second derivative sign line and find the inflection points.

\[
y'' = 12x^2 - 12x + 2 = 2(6x^2 - 6x + 1) = 0 \quad x = \frac{6 \pm \sqrt{36 - 4(6)}}{12} \approx 0.79, 0.21
\]

\[\text{inflection pts: } (0.79, 0.03) \& (0.21, 0.03)\]

(d) Sketch the graph of this function, given all the answers for questions (a) through (c).

11. For the function \(f(x) = \frac{x^2 - 2x + 5}{(x-3)^2} \) with \(f'(x) = \frac{-4(x+1)}{(x-3)^3} \) and \(f''(x) = \frac{14x+27}{(x-3)^4} \), answer the following questions.

 (a) Find the horizontal and vertical asymptotes, if there are any.

 \[\text{VA: } x=3 \quad \text{HA: } y=1\]

 \[\lim_{x \to \infty} \frac{x^2-2x+5}{(x-3)^2} = \lim_{x \to \infty} \frac{x^2}{x^2} = 1\]

 (b) Fill in the first derivative sign line and find the min/max points.

 \[-\frac{4(x+1)}{(x-3)^3} = 0 \text{ when } x=-1 \quad \text{also } x=3 \text{ makes derivative undefined}\]

\[\text{min pt: } (-1, \frac{1}{2}) \quad f(-1) = \frac{1+2+5}{14} = \frac{1}{2}\]

\[\text{no max pt.}\]

(c) Fill in the second derivative sign line and find the inflection points.

\[\frac{14x+27}{(x-3)^4} = 0 \text{ when } x=-\frac{27}{14}\]

\[\text{and } f''(x) \text{ undefined @ } x=3\]

\[\text{inflection pt: } \left(-\frac{27}{14}, 0.52\right) \approx (-1.93, 0.52)\]

(d) Sketch the graph of this function, given all the answers for questions (a) through (c).
12. Suppose the revenue of a company can be modeled by the function \(R(x) = 32x - 0.05x^2 \) where \(R(x) \) is the revenue in thousands of dollars from the sale of \(x \) thousand units of products.

(a) Find the marginal revenue function, \(MR(x) \).

(b) How many units should be sold to maximize revenue?

\[
\begin{align*}
32 - 0.1x &= 0 \\
0.1x &= 32 \\
x &= 320 \text{ thousand units}
\end{align*}
\]

(c) What is the maximum revenue?

\[
R(320) = 32(320) - 0.05(320^2) = 5120 \text{ thousand dollars (i.e. } \$5120000)
\]

(d) If the production is limited to 250 units, how many units will maximize the total revenue?

\[
250,000
\]

(e) Write in words what \(MR(10) \) means.

13. A farmer has 200 feet of fencing and wishes to construct two pens for his animals by first building a fence around a rectangular region, and then subdividing that region into two smaller rectangles by placing a fence parallel to one of the sides. What dimensions of the region will maximize the total area?

\[
A = xy \\ x, y = ? \text{ to maximize Area} \\
A' = x + y \\
A' = \frac{200}{3} - \frac{y}{3}x = 0 \ (\Rightarrow) \ x = 50 \\
(\Rightarrow) \ \text{max area when } x = 50 \text{ ft} \\
= y = \frac{200 - 2(50)}{3} \ \\
\]

\[
\text{This is concave down parabola} \\
\text{Vertex is max pt.}
\]
14. For the function \(g(x, y, z) = x^2 ye^z \) find \(\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} + \frac{\partial g}{\partial z} = 2x ye^z + x^2 e^z + x^2 ye^z \)

\[
\frac{\partial g}{\partial x} = 2x ye^z, \quad \frac{\partial g}{\partial y} = x^2 e^z, \quad \frac{\partial g}{\partial z} = x^2 ye^z
\]

15. If the consumption is $8 billion when disposable income is 0, and if the marginal propensity to save is \(\frac{dS}{dy} = 0.5 + e^{2.3y} \) (in billions of dollars), find the national consumption function.

\[
\frac{dS}{dy} = 0.5 + e^{2.3y} \implies \frac{dS}{dy} = 0 - 0.5ye^{2.3y}
\]

\[
C = \int \left(0.5 - e^{2.3y} \right) dy = 0.5y - \frac{e^{2.3y}}{2.3} + k
\]

but \(C = 8 \text{ when } y = 0 \implies 8 = 0 - \frac{1}{2.3} + k \implies k = 8.43
\]

\[
\Rightarrow C(y) = 0.5y - \frac{1}{2.3} e^{2.3y} + 8.43
\]

16. Given \(f(x, y) = \ln(x^2 + 2y) + x^4 - 2y^3 + xy \) find the following partial derivatives.

(a) \(f_x = \frac{2x}{x^2 + 2y} + 4x^3 + y = 2x(x^2 + 2y)^{-1} + 4x^3 + y \)

(b) \(f_y = \frac{2}{x^2 + 2y} - 6y^2 + x = 2(x^2 + 2y)^{-1} - 6y^2 + x \)

(c) \(f_{xy} = -2x(x^2 + 2y)^{-2}(2y) - 1 = -4x(x^2 + 2y)^{-2} + 1 \)

(d) \(f_{xx} = 2(x^2 + 2y)^{-4} + 2x(-1)(x^2 + 2y)^{-2}(2x) + 12x^2 \)

(e) \(f_{yy} = -2(x^2 + 2y)^{-3}(2y) - 12y \)

17. For the function given by \(f(x, y, z) = 2xy z^2 + x^3 y^2 z - y^4 \) find the following partial derivatives.

(a) \(f_x = 2yz^2 + 3x^2 y^2 z \)

(b) \(f_{xx} = 4yx + 3x^2 y^2 \)

(c) \(f_{xyz} = f_{xzy} = 4yz + 6x^2 y \)

(d) \(f_y \) when \(x = 1, y = 0 \) and \(z = 2 \)

\[
f_y = 2x^2 + 2xy z - 4y^3
\]

\[
f_y(1, 0, 2) = 2(1)(2) + 2(1)(0)(2) - 4(0) = 8
\]
18. Suppose that a product has marginal revenue given by $MR = 75$ and marginal cost given by $MC = 40 + \frac{5}{2}x$. If the fixed cost is 105, how many units will give the maximum profit and what is the maximum profit?

\[MC(x) = 40 + 2.5x \Rightarrow C(x) = 40x + 1.25x^2 + D \]
\[MC(0) = 105 \Rightarrow D = 105 \Rightarrow C(x) = 40x + 1.25x^2 + 105 \]

\[MR(x) = 75 \Rightarrow R(x) = 75x + K \quad \text{but} \quad R(0) = 0 \Rightarrow K = 0 \Rightarrow R(x) = 75x \]

\[p(x) = 75x - (40x + 1.25x^2 + 105) = -1.25x^2 + 35x - 105 \]

\[p'(x) = -2.5x + 35 = 0 \quad \Rightarrow \max \text{ profit at } x = 14 \]
\[p(14) = 140 \quad \max \text{ profit} \]

19. Given the function $f(x, y, z) = \frac{2x^2 + \ln z}{\sqrt{2y + 6}}$

(a) Evaluate $f(1, 5, 1)$.

\[f(1, 5, 1) = \frac{2(1) + \ln 1}{\sqrt{10 + 6}} = \frac{2 + 0}{4} = \frac{1}{2} \]

(b) Find the domain of $f(x, y, z)$.

\[x > 0, \quad 2y + 6 > 0 \quad (\Rightarrow \quad y > -3) \]

20. A certain firm’s marginal cost for a product is $MC = 5x + 100$ and its marginal revenue is $MR = 180 - 2x$. The total profit of the production of 100 items is $15,000$.

(a) Find the total profit function.

\[MP = MR - MC = 180 - 2x - 5x - 100 = 80 - 7x \]
\[\Rightarrow p(x) = \int (80 - 7x) \, dx = 80x - 3.5x^2 + D \]
\[p(100) = 15000 \Rightarrow 15000 = 80(100) - 3.5(100)^2 + D \]
\[\Rightarrow D = -12000 \]

(b) Determine the level of production that yields the maximum profit.

\[p'(x) = 80 - 7x = 0 \]
\[x = \frac{80}{7} \approx 11.43 \]

\[x = 11.43 \quad \text{produces} \quad \max \text{ profit} \]
21. If $1000 is invested for x years at 8% compounded continuously, the future value of the investment is given by $S(x) = 1000e^{0.08x}$.

(a) Find the function that gives the rate of change of this investment.

$$
\frac{dS}{dx} = S' = 1000e^{0.08x} \\
(0, 80) = 80e^{0.08}
$$

(b) Compare the rate at which the future value is growing after 1 year and after 10 years.

$$
S'(1) = 80e^{0.08} \approx 86.66 \\
S'(10) = 80e^{0.8} \approx 178.04
$$

22. The marginal cost for a product is $MC = 12x + 20$ dollars per unit, and the cost of producing 50 items is $1,300. Find the total cost function.

$$
C(x) = \int (12x + 20) \, dx = 6x^2 + 20x + C \\
C(50) = 1300 \Rightarrow 6(50^2) + 20(50) + C = 1300 \Rightarrow C = -14700 \\
C(x) = 6x^2 + 20x - 14700
$$

23. If the graph below represents the graph of $y = f(x)$, answer the following questions.

(a) $\lim_{x \to 6} f(x) = \infty \text{ or DNE}$

(b) $\lim_{x \to 5^-} f(x) = 6$

(c) $\lim_{x \to 5^+} f(x) = 4$

(d) $\lim_{x \to 5} f(x) \text{ DNE}$

(e) $\lim_{x \to 13} f(x) = 2$

(f) $\lim_{x \to 18} f(x) = 5$

(g) $f(-6) \text{ DNE}$

(h) $f(5) = 4$

(i) $f(13) = 3$

(j) $f(18) \text{ DNE}$

(k) For what x-values is $y = f(x)$ discontinuous?

$\cup \quad \text{VA} \quad \text{jump} \quad \text{hole}$

@ $x = -6, 5, 13$
24. Suppose a continuous income stream has an annual rate of flow \(f(t) = 85e^{-0.01t} \), in thousands of dollars per year, and the current interest rate is 7% compounded continuously.

(a) Find the total income over the next 12 years.

\[
I = \int_0^{12} 85e^{-0.01t} \, dt = \left. -\frac{8500e^{-0.01t}}{-0.01} \right|_0^{12} = 8500(e^{-0.12} - e^0) = 9411.18
\]

(b) Find the present value over the next 12 years.

\[
PV = \int_0^{12} 85e^{-0.01t} e^{-0.07t} \, dt = 85 \int_0^{12} e^{-0.08t} \, dt = \left. -\frac{8500e^{-0.08t}}{-0.08} \right|_0^{12} = 8500(e^{-0.08(12)} - e^0) = 8555.68
\]

(c) Find the future value 12 years from now.

\[
FV = e^{0.07(12)} \left(8500(e^{-0.08(12)} - e^0) \right) = e^{0.09(12)} \left[8555.68 \right] \\
\approx 15187.9
\]

25. Suppose the supply function for a product is \(f(x) = 40 + 0.001x^2 \) and the demand function is \(p = 120 - 0.2x \), where \(x \) is the number of units and \(p \) is the price in dollars. If the market equilibrium price is $80, find the following.

(a) the consumer's surplus

\[
CS = \int_0^{x_1} f(x) \, dx - p \cdot x_1 = \int_0^{200} (120 - 0.2x) \, dx - 80(200) = \left. (120x - 0.1x^2) \right|_0^{200} - 16000 = 4000
\]

(b) the producer's surplus

\[
PS = p \cdot x_1 - \int_0^{x_1} g(x) \, dx = 80(200) - \int_0^{200} (40 + 0.001x^2) \, dx = 16000 - \left. \left(40x + \frac{0.001}{3}x^3 \right) \right|_0^{200} = 16000 - (40(200) + \frac{0.001(200)^3}{3} - 0) \\
\approx 5333.33
\]
26. The cost of producing x cupcakes is given by $C(x) = 100 + 20x + 0.01x^2$ dollars. How many units should be produced to minimize average cost?

$$\bar{C} = \text{avg cost} = \frac{C(x)}{x} = \frac{100}{x} + 20 + 0.01x$$

$$\bar{C}'(x) = -\frac{100}{x^2} + 0.01 = 0$$

$$\Rightarrow \frac{1}{100} = \frac{1}{x^2} \Rightarrow x^2 = 100 \Rightarrow x = 100 \text{ (since x can't be negative)}$$

27. The demand function for a product under competition is $p = \sqrt{64 - 4x}$ and the supply function is $p = x - 1$, where x is the number of units and p is in dollars. Find the following.

(a) the market equilibrium point

$$\sqrt{64-4x} = x-1$$

$$64-4x = (x-1)^2$$

$$64-4x = x^2 - 2x + 1$$

$$x^2 + 2x - 63 = 0$$

$$x = 7, -9$$

Equilibrium pt at $x = 7$

$$p = x - 1 = 7 - 1 = 6$$

$(7, 6)$ equil. pt

(b) the consumer's surplus at market equilibrium

$$CS = \int_0^7 (\sqrt{64-4x}) - x \, dx = \int_0^7 64-4x - x \, dx - 6(7)$$

$$= \int_0^7 u \frac{3}{2} (\frac{2}{3}) du - 42 = \frac{1}{4} u^3 \bigg|_{x=0}^{x=7} - 42$$

$$= \frac{1}{6} (64 - 4x)^{3/2} \bigg|_0^7 - 42$$

$$= \frac{1}{6} (216 - 512) - 42$$

$$= -\frac{1}{6} (296) - 42$$

$$= -$1.33

(c) the producer's surplus at market equilibrium

$$PS = p(x_1) - \int_0^{x_1} g(x) \, dx$$

$$= 6(7) - \int_0^7 (x-1) \, dx = 42 - \left(\frac{x^2}{2} - x\right) \bigg|_0^7$$

$$= 42 - \left(\frac{49}{2} - 7\right) = $24.50