Math5700 Notes

Section 5.2
Divisibility Properties of Integers
Eulidean Algorithm for GCF: (one you can teach to younger kids)

1. $\operatorname{GCF}(180,504)$
2. $\operatorname{GCF}(180,504)$

Venn Diagram for LCM and GCF:

Claim: $\operatorname{GCF}(a, b) * \operatorname{LCM}(a, b)=a b$ for all natural numbers a and b.
Proof:

Note: If a and b are relatively prime, then in their Venn diagram, we can draw their circles as mutually exclusive.

Diophantine Equations: equations with integer coefficients where we're only interested in integer solutions.

Example (stamp problem):
(a) Can the exact 93 -cent postage for a package be put on the package using only 15 -cent and 6 -cent stamps?
(b) What if we need $\$ 1.93$ postage on the package?

Claim: The postage, for this problem, needs to be \qquad in order to create that amount using only 15 -cent and 6 -cent stamps.

Why?

Theorem 5.6:
For all natural numbers a and b, such that $a^{2}+b^{2} \neq 0$, the Diophantine equation $a x+b y=G C F(a, b)$ has solutions.

Claim: For all natural numbers a and $b, \operatorname{GCF}(a, b)=1$ iff there is an x and $y \in \mathbb{Z}$ such that $a x+b y=1$

Proof:

Now we claim that any two consecutive positive integers are always relatively prime. Why?

Theorem 5.8:
Let $a, b, c \in \mathbb{Z}$ and $d=G C F(a, b)$. Then $a x+b y=c$ has solutions iff d is a factor of c .
And, if $\left(x_{0}, y_{0}\right)$ is one solution of this equation, then the set of all integer solutions is given by $\left(x_{0}-\frac{m b}{d}, y_{0}+\frac{m a}{d}\right) \forall m \in \mathbb{Z}$.
(see proof in book, section 5.2.3)

Pythagorean Triples

(another Diophantine equation)

$$
a^{2}+b^{2}=c^{2} \text { such that } a, b, c \in \mathbb{N}
$$

Can we find solutions?
We only need to find "primitive" triples, since if (a, b, c) is a solution, then so is (ma, mb, mc) for some positive m-value.

Process:

1. If we are only looking for primitive triples, then a must be odd and b must be even (or vice versa) because
2. c is odd because
3. $(c-b)$ and $(c+b)$ have no common factors.

Theorem 5.3:
If the product of two relatively prime integers u and v is a perfect square of an integer, then u and v are also perfect squares.

Proof:

4. Pythagorean Triples Formula

Other Bases

Theorem 5.15:
For every integer $\mathrm{b}, \mathrm{b}>1$, every positive integer n has a unique representation in base b .

Example:
(a) Find base 4 representation of 365 .
(b) Rewrite 365 in base 2.
(c) Rewrite 1000 in base 2 (binary), in base 8 (octal), and in base 16 (hexadecimal).

Example:
Given $x=647_{8}$ and $y=251_{8}$, find
$x-y \quad x+y \quad x y$

Claim: If the sum of the digits of a base 10 number is divisible by 9 , then so is the number.
Proof:

