Math5700 Notes

Section 3.3

Problems Involving Real Functions
Consider this pattern of toothpicks.

(a) For counter n , what is s_{n}, where s_{n} is the number of squares?
(b) For counter n , what is p_{n}, where p_{n} is the outer perimeter?
(c) For counter n , what is t_{n}, where t_{n} is the number of toothpicks?

n	s_{n}	p_{n}	t_{n}
1			
2			
3			
4			
5			
6			
n			

What is the difference between a recursive formula and an iterative formula?

Consider this sequence, given in the table.

n	a_{n}
1	
2	
3	
4	19
5	59
6	
\ldots	137
n	

Can you find an iterative formula for a_{n} ?

Another example: Let $a_{n}=\operatorname{sum}$ of the $4^{\text {th }}$ powers of integers from 1 to n . Determine if a polynomial will fit the data. If so, what degree is it? How would you find the polynomial?

Theorem 3.15: Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$.
(a) If f is linear, then f has the following property: There is a real m such that $f(x+1)-f(x)=m$ $\forall x \in \mathbb{R}$.
(b) If f has the above property, then the linear function L defined by $L(x)=m x+f(0)$ $\forall x \in \mathbb{R}$ agrees with f at all $x \in \mathbb{Z}^{+}$.
Corollary: A real sequence $\left\{f_{n}\right\}$ has a constant difference d, i.e. $d=f_{n+1}-f_{n} \quad \forall n \geq 0$ iff $f_{n}=d n+f_{0} \quad \forall n \geq 0$.

Theorem 3.17: Suppose $\quad f: \mathbb{R} \rightarrow \mathbb{R}$. If the nth difference function $\Delta^{n} f$ of f is a nonzero constant, then there exists an nth-degree polynomial that agrees with the function f at every nonnegative integer.

Theorem: If $\left\{f_{n}\right\}$ is a sequence with constant second differences, then there is a quadratic function $Q(n)=a n^{2}+b n+c$ such that $Q(n)=f(n)$ (notation: $f_{n}=f(n)$) for all $\mathrm{n}=0,1,2, \ldots$, where $a, b, c, \in \mathbb{R}$.

Prove:
(1) Find an iterative formula for f_{n} (the fact that you have constant second differences for $\left\{f_{n}\right\}$ means you have a recursive formula). Let the common second difference be d.
(2) Now define $Q(x)=a x^{2}+b x+c$ where $a, b, c, \in \mathbb{R}$. Show that $\Delta^{2} Q$ is constant $\forall x \in \mathbb{R}$.
(3) We can certainly force infinitely many quadratic functions to go through the two points $(0, f(0))$ and $(1, f(1))$. Find a, b, c for $Q(x)$ in order that $Q(0)=f(0)$ and $Q(1)=f(1)$.
(4) By induction, prove that $Q(n)=f(n)$ for all $\mathrm{n}=0,1,2, \ldots$.

Consider this sequence, given in the table.

n	a_{n}	
1		5.5
2		13.2
3		31.7
4		76
5		182.5
6		437.9
\ldots		
n		$? ?$

Can you find an iterative formula for a_{n} ?

Notation: Let $\Theta f(x)=\frac{f(x+1)}{f(x)}$ be the first quotient operator.
Theorem 3.16: Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$.
(a) If f is an exponential function, then f has the following property: There is a real b such that $\frac{f(x+1)}{f(x)}=b \quad \forall x \in \mathbb{R}$.
(b) If f has the above property, then the exponential function G defined by $G(x)=f(0) b^{x}$ $\forall x \in \mathbb{R}$ agrees with f at all $x \in \mathbb{Z}^{+}$.

Corollary: A real sequence $\left\{g_{n}\right\}$ has a constant ratio r, i.e. $r=\frac{g_{n+1}}{g_{n}} \quad \forall n \geq 0$ iff $g_{n}=g_{0} r^{n} \quad \forall n \geq 0$.

What is the "growth rate" of exponential function?

