Math5700 Notes

Section 2.1.2-2.1.3

Starters:

| 1. Use the Division Algorithm to write | |
| :---: | :---: | :---: |
| $\frac{179}{7}$ as a decimal. | 2. Convert $3.012 \overline{351}$ to a fraction. |

Theorem 2.6: When is a proper fraction a terminating decimal? And how can we tell that it terminates in t digits after the decimal?

Theorem 2.8: What happens if the denominator of a proper fraction (in reduced form) has no 2 nor 5 as prime factors?

Theorem 2.7: Derive a formula for simple-periodic decimal, x (that's between 0 and 1), with period p .

$$
\text { Let } \quad x=0 . \overline{d_{1} d_{2} d_{3} \ldots d_{p}} \text {. }
$$

Theorem $2.9 \& 2.10:$ What if $x=0 . d_{1} d_{2} d_{3} \ldots d_{t} \overline{d_{t+1} d_{t+2} d_{t+3} \ldots d_{t+p}}$?

Examples:

1. (a) Find decimal representations for $\frac{1}{27}$ and $\frac{1}{37}$.
(b) Can you find another similar example?
2. Consider reciprocals of primes that have simple-periodic decimal representations.
(a) Show there is exactly one with period $\mathrm{p}=1$. What is it?
(b) Show there is exactly one with period $\mathrm{p}=2$. What is it?
(c) Show there is exactly one with period $\mathrm{p}=3$. What is it?
(d) Show there are exactly two with period 5 . What are they?
3. Use the formula for a geometric series to write $0 . \overline{345}$ and $0.3 \overline{45}$ as reduced fractions.
