Math5700 Notes Section 2.1 The Real Numbers

Number Systems:

N =W =Z =Q =

R =

Rational Numbers: Must a rational number be a fraction?

<u>Theorem</u>: 1. Q is closed under addition, subtraction and multiplication. 2. $Q - \{0\}$ is closed under division.

Proof of 2:

Irrational Numbers:

<u>Theorem</u>: Let s be in Q – {0} and v be in R – Q. Then s+v, s-v, sv and $\frac{s}{v}$ are irrational.

Proof:

What about adding, subtracting, multiplying and dividing two irrational numbers?

Prove that $\log_{10} 2$ is irrational.

<u>Theorem</u>: Let $n \in \mathbb{Z}^+$. Then \sqrt{n} is either an integer or is irrational.

Proof:

What is the value of $\sqrt{5+\sqrt{5+\sqrt{5+\dots}}}$?

So, is $\sqrt{n+\sqrt{n+\sqrt{n+\dots}}}$ always irrational? (What about n = 2?)