Math5700 Homework \#2

Fall, 2014
From the book, do these problems:
2.1.1 \#3, 5, 8, 10, 12(a,b)
2.1.2 \#6
2.1.3 \#1, 5, 8
2.1.4 \#1, 9

And, then also do the following problems.
A. Solve these inequalities.
(1) $|4-2 x|+1 \geq 11$
(2) $(y+4)^{4}+5<0$
(3) $\frac{2 \mathrm{x}^{2}+10 \mathrm{x}-16}{x-4} \leq 3$
(4) $\log _{4}(w-1)^{4}+2 \leq \log _{4}(2 w-2)$
(5) $\log _{4}(w-1)^{3}+2 \leq \log _{4}(2 w-2)$
(6) $\quad-2\left(9^{x^{6}-1}\right) \geq 36$
(7) $\quad x(2 \mathrm{x}-1)(x-3)^{2}<0$
(8) $\frac{1}{x+2} \geq \frac{2}{x-2}$
B. If you're given this inequality $\frac{13}{31}<\frac{8}{19}$ and you need to verify if it is in fact correct, how would you explain this to your students (without a calculator)? And, would it be reasonable to "cross multiply" to check the validity of the statement? Why or why not?

What if the inequality is $-\frac{13}{31}<-\frac{8}{19}$ instead?
What if the inequality is $\frac{13}{31}<\frac{8}{19 x}$ instead?
C. In which setting or under what conditions do you need to consider different cases in solving an inequality?

