Different Interpretations of Trigonometric Functions, Fall 2014

	Setting/Picture	$\cos (\theta)$	$\sin (\theta)$	Other trig functions	Comments
A.	Unit Circle, (a, b) is the point where the angle intersects the unit circle	input: angle in standard position output: a (the x-coordinate)	input: angle in standard position output: b (the y-coordinate)	Obtained from sine and cosine: $\begin{aligned} & \tan \theta=\frac{\sin \theta}{\cos \theta} \\ & \cot \theta=\frac{\cos \theta}{\sin \theta} \\ & \sec \theta=\frac{1}{\cos \theta} \\ & \csc \theta=\frac{1}{\sin \theta} \end{aligned}$	A. is like B. with $\mathrm{r}=1$
B.	Circle with center $(0,0)$, radius r. (a, b) is the point where the angle intersects the circle	input: angle in standard position output: the ratio $\frac{a}{r}=\frac{\mathrm{x}-\text { coord. of point }}{\text { radius of circle }}$	input: angle in standard position output: the ratio $\frac{b}{r}=\frac{\mathrm{y}-\text { coord. of point }}{\text { radius of circle }}$	Ratios of $\mathrm{x}-, \mathrm{y}$ coordinates and/or the radius of the circle: $\begin{aligned} \tan \theta & =\frac{b}{a} \\ \cot \theta & =\frac{a}{b} \\ \sec \theta & =\frac{r}{a} \\ \csc \theta & =\frac{r}{b} \end{aligned}$	B. is like C, but you need to add the sign based on which quadrant the terminal side of the angle is in.
C.	Right Triangle	input: an angle between 0 and 90° output: ratio of sides of a right triangle, $\frac{\text { adj }}{\text { hyp }}$	input: an angle between 0 and 90° output: ratio of sides of a right triangle $\frac{\text { opp }}{\text { hyp }}$	Ratios of sides of the triangle: $\begin{aligned} & \tan \theta=\frac{\text { opp }}{\text { adj }} \\ & \cot \theta=\frac{\text { adj }}{\text { opp }} \\ & \sec \theta=\frac{\text { hyp }}{\text { adj }} \\ & \csc \theta=\frac{\text { hyp }}{\text { opp }} \end{aligned}$	C. is like B. with all triangles in Quadrant 1
D.	Graph on coordinate	input: any real number output: the real number obtained by computing cosine (use method A.) of θ radians	Similar to cosine	Similar to cosine	

