Appendix C（Systems of Equations 步 Inequalities； and Partial Fraction Decomposition （ $P F D$ ））

System of linear Equations
a set of linear equs to be＂solved＂simuitaneonly （were lowing for the point（s）where the lines／planes intersect）
in 2－d：
（1）

consistent one solution

inconsistent no solution
（3）

（same lines）
consistent all pts out the line are solutions

Strategies to Solve system of Linear Equs：
（1）Graphing
（2）Substitution
（3）Elimination
（unreliable） for fraction values of x and y ．
（2）Substit and

$$
\left[\begin{array}{l}
\text { Great and } \\
\text { useful for } \\
\text { systems of } \\
\text { any type of } \\
\text { equs (not } \\
\text { jüst linear) }
\end{array}\right]
$$

$$
\left[\begin{array}{l}
\text { Fest and } \\
\text { great for } \\
\text { linear } \\
\text { systems }
\end{array}\right]
$$

App C (cont)
ExI Solve these systems of equs.
(a) (use substitution)

$$
\begin{aligned}
& 2 x+10 y=-22 \\
& -3 x-14 y=30
\end{aligned}
$$

(b) Lase elimination)

$$
\begin{aligned}
& 3 x+2 y=17 \\
& -5 x+3 y=16
\end{aligned}
$$

Ex 2 Solve this system of 3 equs.

$$
\begin{array}{r}
2 x+y-2 z=1 \\
x+3 y+z=2 \\
3 x+4 y-z=5
\end{array}
$$

App C (cont)
Ex 3 Solve these systems of equs.
(a)

$$
\begin{aligned}
3 x-4 y & =5 \\
-6 x+8 y & =10
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x=2 y-7 \\
& 5 x-1=10 y
\end{aligned}
$$

Solving a system of linear inequalities (is 2-d)
Strategy: (1) graph the lives
(2) Shade in the appropriate half-plane for each line (pick a test pt)
(3) keep the intersection of all regions shaded in (2)

App C (cont)
Ex y Solve this system of linear inequalities.

$$
\begin{aligned}
& 3 y-2 x \geq-6 \\
& 2 x+5 y \leq 10 \\
& 6 x+3 y \geq-6
\end{aligned}
$$

App C (cont)
Partial Fraction Decomposition
$P(x)=$ a palynonacl of x

$$
\begin{aligned}
& P(x)=\text { a polynomial of } x \\
& \begin{array}{r}
\frac{P(x)}{(x-a)^{n}(x-b)^{n}\left(x^{2}+c\right)^{k}}
\end{array}=\begin{array}{r}
\begin{array}{r}
\frac{A_{1}}{x-a}+\frac{A_{2}}{(x-a)^{2}}+\cdots+\frac{A_{n}}{(x-a)^{2}}+\frac{B_{1}}{x-b}+\frac{B_{2}}{(x+b)^{2}}+\cdots+\frac{B_{m}}{(x-b)^{m}} \\
\left(x^{2}+c\right)
\end{array}+\frac{C_{2} x+D_{2}}{\left(x^{2}+c\right)^{2}}+\cdots+\frac{C_{k} x+D_{k}}{\left(x^{2}+c\right)^{k}}
\end{array}
\end{aligned}
$$

Ex Find the partial fraction decomposition (PFD) for this rational expressions.

Strategy:
(1) Set up PFD eau
(2) multiply both sides by original denominator
(3) Solve for $A, B, 5$ ctr. ing:
(a) equate coefficients of lethe terms

OR
(b) plugging in values of x

App C (cont)
Ex6 Find PFD.

$$
\text { (a) } \frac{16 x^{2}}{(x-6)(x+2)^{2}}
$$

(b) $\frac{20 x}{(x-1)^{2}\left(x^{2}+1\right)}$

App C (cont)
Ex 7 Solve this system of eqns.

$$
\begin{aligned}
& x+3 y=0 \\
& x^{2}+y^{2}=40
\end{aligned}
$$

