8.2 Ellepses

Ingredients: two points (foin) and a distance
Defre of Ellipse: The set of all points in a plane such that for each pt on the ellipse, the sum of its distances from the two fixed pts (called fri) is constant.
ExI Given the pts $F_{1}(-4,0)$ and $F_{2}(4,0)$ (the two foin) and a constant distance of 12 , draw the ellipse that these determine.

8.2 (cont)

Standard form of ellipse $w /$ center at $(0,0)$: by defy $d_{1}+d_{2}=2 a$
(assume $a>b$)

$$
\begin{aligned}
& F_{1}(-, 0) \quad F_{2}(c, 0) \\
& \begin{array}{l}
F_{1}(-y 0) \quad F_{2}(c, 0) \\
x^{2}+2 c x+e^{2}+y^{2}=4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}}+x^{2}-2 c x+c^{2}+y^{2} \\
\end{array} \\
& \left(4 c x-4 a^{2}\right)^{2}=\left(-4 a \sqrt{(x-c)^{2}+y^{2}}\right)^{2} \\
& \begin{array}{l}
\left(4 c x-4 a^{2}\right)=\left(-4 a \sqrt{(x-c)^{2}+y^{2}}\right. \\
16 c^{2} x^{2}-32 c a^{2} x+16 a^{4}=16 a^{2}\left(x^{2}-2 c x+c^{2}+y^{2}\right) \\
2 c^{2} x+16 a^{4}=16 a^{2} x^{2}-32 c a^{2} x+16 a^{2} c^{2}+16 a^{2}
\end{array} \\
& \begin{array}{l}
16 c^{2} x^{2}-32 c a^{2} x+16 a^{4}=16 a \\
16 c^{2} x^{2}-32 c a^{2} x+16 a^{4}=16 a^{2} x^{2}-32 c a^{2} x+16 a^{2} c^{2}+16 a^{2} y^{2} \\
\text { Let } b^{2}=a^{2}-c^{2}
\end{array} \\
& \begin{array}{l}
16 c^{2} x^{2}-32 c a x \quad \frac{-1}{16}\left(16\left(c^{2}-a^{2}\right) x^{2}-16 a^{2} y^{2}\right)=\left(16 a^{2} c^{2}-16 a^{4}\right) \frac{-1}{16} \quad \text { Let } b^{2}=a^{2}-c^{2} \\
\left(a^{2}-c^{2}\right) x^{2}+a^{2} y^{2}=a^{4}-a^{2} c^{2}
\end{array} \\
& \left(a^{2}-c^{2}\right) x^{2}+a^{2} y^{2}=a^{4}-a^{2} c^{2} \\
& b^{2} x^{2}+a^{2} y^{2}=a^{2}\left(a^{2}-c^{2}\right) \\
& \sqrt{(x+c)^{2}+(y-0)^{2}}+\sqrt{(x-c)^{2}+(y-0)^{2}}=2 a \\
& \left(\sqrt{(x+c)^{2}+y^{2}}\right)^{2}=\left[2 a-\sqrt{(x-c)^{2}+y^{2}}\right]^{2}
\end{aligned}
$$

$8.2(\operatorname{con} t)$

$$
\begin{aligned}
& \frac{b^{2} x^{2}+a^{2} y^{2}}{a^{2} b^{2}}=\frac{a^{2} b^{2}}{a^{2} b^{2}} \\
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
\end{aligned}
$$

standard eqn for ellipse $\omega /$ center at $(0,0)$
goes through pts $(\pm a, 0)$ and $(0, \pm b)$ (x-mitercepts) (y-intercepts)

Notice:
We have

$$
b^{2}=a^{2}-c^{2}
$$

(from our proof)
here is geometric interpretation
in (1), $b^{2}+c^{2}=a^{2}$
$a>b \quad \Leftrightarrow c^{2}=a^{2}-b^{2}$
(or $b^{2}=a^{2}-c^{2}$)

8.2 (cont)

Standard Ellipse center at $(0,0)$

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Transformed Ellipse center at (h, k)

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

$$
c^{2}=\left|a^{2}-b^{2}\right|
$$

$c=$ distance from center to each focus

| | $\frac{a<b}{}$ | $\frac{a>b}{}$ |
| :--- | :--- | :--- | :--- |
| vertices: | $(0, \pm b)$ | $(\pm a, 0)$ |
| foci: | $(0, \pm c)$ | $(\pm c, 0)$ |\(\left\{\begin{array}{lll} \& \begin{array}{ll}a<b \& a>b \\

\hline\end{array} \& $$
\begin{array}{ll}(h, k \pm b) & (h \pm a, k) \\
\end{array}
$$\end{array}\right.\)
if $a=b$, then we have a C(RCLE with radius $r=a=b$ (and both foci in one pt at (h, k))

The eqn $(x-h)^{2}+(y-k)^{2}=0$ is
Ex sketch the curves:
(a) $4 x^{2}+9 y^{2}=36$
(b) $\frac{(x-3)^{2}}{9}+\frac{(y-2)^{2}}{16}=1$

8.2 (cont)

Ex 3 Graph the curve and find the eqn of the ellipse.
(a) Set of pts 3 units away from $(-2,3)$

(b) Set of pts such that sum of distances from $(-4,1)$ and $(2,1)$ is 10 .

(c) Ellipse wo l varices at $(-6,3)$ and $(4,3)$ and foci at $(-4,3)$ and $(2,3)$.

$8.2(\mathrm{con} t)$
ExT Graph this curve. $x^{2}+9 y^{2}-4 x-18 y-14=0$

8.3 Hyperbolas

Ingredients: two points and a constant distance (foci)
Defrn of Hyperbola: The set of all points in a plane such that the difference of its distances from two fixed points is constant.

Ex Given $F_{1}(-4,0)$ and $F_{2}(4,0)$ and the constant distance 1, draw the hyperbola that these determine.

8.3 (cont)

Vocab:

Standard Form of Hyperbola w/ center at $(0,0)$
hoizzontal

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

$$
a^{2}+b^{2}=c^{2}
$$

foch: $(\pm c, 0)$
vertices: $(\pm a, 0)$
vertical

$$
\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1
$$

$$
a^{2}+b^{2}=c^{2}
$$

foci: $(0, \pm c)$
vertices: $(0, \pm b)$

Egn of Hyperbola (for horizontal case)
distance from (x, y) on hyperbola to $(-c, 0)$ and $(c, 0)$ has constant difference of $2 a$.

$$
\Rightarrow\left|\sqrt{(x+c)^{2}+(y-0)^{2}}-\sqrt{(x-c)^{2}+(y-0)^{2}}\right|=2 a
$$

8.3 (cont)
case: (1) \geq (2) \Rightarrow abs value does nothing.

$$
\begin{aligned}
& \left(\sqrt{(x+c)^{2}+y^{2}}\right)^{2}=\left(2 a+\sqrt{(x-c)^{2}+y^{2}}\right)^{2} \\
& (x+c)^{2}+y^{2}=4 a^{2}+4 a \sqrt{(x-c)^{2}+y^{2}}+(x-c)^{2}+y^{2} \\
& y^{2}+2 c x+c^{2}=4 a^{2}+4 a \sqrt{x^{2}-2 c x+c^{2}+y^{2}}+x^{2}-2 c x+c^{2} \\
& \left(4 c x-4 a^{2}\right)^{2}=\left(4 a \sqrt{x^{2}-2 c x+c^{2}+y^{2}}\right)^{2} \\
& 16 c^{2} x^{2}-32 c a^{2} x+16 a^{4}=16 a^{2}\left(x^{2}-2 c x+c^{2}+y^{2}\right) \\
& 16 c^{2} x^{2}-32 c a^{2} x+16 a^{4}=16 a^{2} x^{2}-33 c a^{2} x+16 a^{2} c^{2}+16 a^{2} y^{2} \\
& 16 c^{2} x^{2}-16 a^{2} x^{2}-16 a^{2} y^{2}=16 a^{2} c^{2}-16 a^{4} \\
& \left(c^{2}-a^{2}\right) x^{2}-a^{2} y^{2}=a^{2}\left(c^{2}-a^{2}\right) \quad \text { but } b^{2}=c^{2}-a^{2} \\
& \frac{b^{2} x^{2}-a^{2} y^{2}=\frac{a^{2} b^{2}}{a^{2} b^{2}}}{a^{2} b^{2}} \quad \text { (case 2} \text { will } \begin{array}{l}
\text { yield } \text { same } \\
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
\end{array} \text { result) }
\end{aligned}
$$

Standard Hyperbola Equs w/ center at (h, k)
horizontal

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

foci: ($h \pm c, k$)
vertices: $(h \pm a, k)$
vertical

$$
\left.\right|_{a^{2}+b^{2}=c^{2}} \frac{(y-k)^{2}}{b^{2}}-\frac{(x-h)^{2}}{a^{2}}=1
$$

foil: $(h, k \pm c)$ vertices: $(h, k \pm b)$
8.3 (cont)

Ex 2 Graph.
(a) $\frac{x^{2}}{4}-\frac{y^{2}}{25}=1$
(b) $9(y+1)^{2}-4(x-2)^{2}=1$

Given $A x^{2}+C y^{2}+D x+E y+F=0$
(i) $A=0$ and $C=0 \Rightarrow$ its a live
(ii) $A=0$ or $C=0 \Rightarrow$ it's a parabola
(but not both 0)
(iii) A and C have same sign \Rightarrow it's an ellipse
(iv) $A=C($ not ser $) \Rightarrow$ its a circle
(v) A and $($ have opposite signs \Rightarrow it's a hyperbola
8.3 (Gont)

Ex3 Identify each conic and graph.
(a) $5(x-3)^{2}-(y+2)^{2}=15$
(b) $\frac{x-3}{9}+\frac{y-2}{4}=1$

(c) $9(x+3)^{2}+4(y-2)^{2}=0$
(d) $9(x+3)^{2}+18(y-2)=0$

8.3 (cont)
(e) $9 x^{2}+16 y^{2}-54 x-128 y+333=0$

