CONIC SECTIONS (Chapter 8)
Conic Sections include parabolas, hyperbdas and ellipses (\& cradles)
All conic sections have the form

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

where A, B, C, D, E, F are constants and

$$
A^{2}+B^{2}+C \neq 0
$$

* All of the above conics have horizontal and/or vertical symmetry. If $B \neq 0$, this rotates the conic.

$$
(B=0)
$$

We will not cover this.
8.1 Parabolas

Ingredients: one point (called the focus) and a line (called the directrix)
Defy (Parabola): the set of all points from the given pt (focus) and the given live (directrix)

Ex Given the four, F, and directrix, L, that is 4 units from F, draw the parabola that they determine.

Mare Vocab

- vertex is halfway between F and L
- Well let $p=$ distance from the vertex to the focus $\Leftrightarrow 2 p$ is the distance from focus to directrix
8.1 (cont)

Let (x, y) be any pt on the parabola.
Let F be at $(0, p)$, directrix at $y=-p, p \in \mathbb{R}^{+}$. Then the parabola has vertex $(0,0)$ and opens

Distance from (x, y) to $F=$ distance from (x, y) directrix upward.

$$
\begin{gathered}
\Rightarrow \sqrt{(x-0)^{2}+(y-p)^{2}}=|y+p| \\
\left(\sqrt{x^{2}+(y-p)^{2}}\right)^{2}=(|y+p|)^{2} \\
x^{2}+(y-p)^{2}=(y+p)^{2} \\
x^{2}+y^{2}-2 p y+p^{2}=y^{2}+2 p y+p^{2} \\
x^{2}=4 p y
\end{gathered}
$$

Standard Form of parabolas w/ vertex at $(0,0)$

egg: $\quad x^{2}=4 p y$
directrix: $y=-p$

$F(p, 0)$ focus
$p<0$

eau $y^{2}=4 \rho x$
directrix: $x=-\rho$
8.1 (cont)

Ex (a) Graph $2 x^{2}=-4 y$
(b) Graph $3 y^{2}-12 x=0$

We can transform these graphs lithe all the others. shifting left/righth and up/down k would move vertex from $(0,0)$ to (h, k).

eqn: $(x-h)^{2}=4 p(y-k)$ $F(h, k+p)$ focus directrix: $y=k-p$ axis of symmetry: $x=h$ vertex (h, k)

eq n $(y-k)^{2}=4 p(x-h)$
$F(h+c, k)$ focus directrix: $x=h-p$ axis of sypmpuetry: $y=k$ vertex (hi)
8.1 (cont)

Ex 3 Graph $(x+2)^{2}=2(y-1)$

Ex Graph $y^{2}-6 y=-4 x-1 \mid \quad$ (hint: complete the square)

8.1 (cont)

Ex Find the equ of each parabola. (a) w) directrix at $y=-4$ and vertex at $(4,-1)$
(b) wt vertex at $(4,2)$ passing through $(-3,-4)$; axis of symmetry parallel to x-axis

