\#25 $f(x)=3 x-7$ at $(3,2)$
secant line slope

$$
\begin{aligned}
M_{\text {sec }} & =\frac{f(x+h)-f(x)}{h} \text { at } x=3 \text {, then } \\
M_{\text {sec }} & =\frac{f(3+h)-f(3)}{h}=\frac{3(3+h)-7-(3(3)-7)}{h} \\
& =\frac{9+3 h-7-2}{h}=\frac{3 h}{h}=3
\end{aligned}
$$

\Rightarrow the slope is always, 3 (which we already knew because its a lire)
\Rightarrow slope of any tangent is also 3 .
(\#29) $f(x)=x^{3}$ at $x=2$ (tangent line slope) t then equ of tangent line

$$
\begin{aligned}
m_{\text {sec }} & =\frac{f(2+h)-f(2)}{h}=\frac{(2+h)^{3}-2^{3}}{h} \\
& =\frac{2^{8}+3\left(2^{2} h\right)+3\left(2 h^{2}\right)+h^{3}-2^{3}}{h} \\
& =\frac{12 h+6 h^{2}+h^{3}}{h}=\frac{h\left(12+6 h+h^{2}\right)}{h} \\
& =12+6 h+h^{2} \Rightarrow m_{\tan }=12+6(0)+0^{2}=12
\end{aligned}
$$

\Rightarrow tangent line: $m=12$ pt $(2,8)$

$$
f(2)=2^{3}=8 \uparrow
$$

$$
\begin{aligned}
y-8 & =12(x-2) \\
y-8 & =12 x-24 \\
y & =12 x-16
\end{aligned}
$$

(\#41) set it up as paints; we know when (stretch, weight)

$$
\text { stretch }=x=0, \quad y=\text { weight }=0 \mathrm{lb}
$$

$$
\text { and } \quad x=6 i, \quad y=10 \text { es }
$$

\Rightarrow i-e. line goes thru $(0,0)$ and $(6,10)$

$$
y=\frac{5}{3} x
$$

$$
m=\frac{10}{6}=\frac{5}{3}
$$

if $x=$ stretch $=9.5$ in, then $y=\frac{5}{3}(9.5)=15.83 \mathrm{lls}$

\#51) think of value as functor of time $v=v(t)$ so pto are ordered pairs (t, v)
We know when $t=0, v=\$ 215,000$ $c t=0$ is when it's purchased) when $t=10$ yrs, $v=\$ 35,000$
rate of depreciation is the slope of the line connecting the two pts.

$$
\begin{aligned}
& (0,215000)(10,35000) \\
& m=\frac{215000-35000}{0-10}=-18,000(\$ / \mathrm{yr})
\end{aligned}
$$

this means that for each additional year, the value dercases by $\$ 18000$

