2,3 Graph of a Function
Vocab/Defrs
(1) Graph of a function \Rightarrow all pts $(x, y) \geqslant y=f(x)$ $f(x)$ for all x in domain of f.
(2) y-intercept \Rightarrow the pt $(0, b)$ on $y=f(x)$ T_{0} find:
(3) x-intercept \Rightarrow the pt $(a, 0)$ on $y=f(x)$ a is also called zero/ root of the function
(4) f is increasing if $f\left(x_{1}\right)<f\left(x_{2}\right)$ whiners

$$
x_{1}<x_{2}
$$

f is decreasing if $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever
domain

- Solve for y - Look for restrictions or x $x_{1}<x_{2}$
Base Graphs

$$
y=x
$$

$y=x^{2}$

$y=x^{3}$

2.3 (cont)

More Vocab/Defrs
(5) even for: $f(-x)=f(x)$ (has symmetry wry y-axis)
(6) odd $f_{n}: \quad f(-x)=-f(x) \quad$ (" " origin.
(7) arg rate of change: $\frac{\Delta y}{\Delta x}=\frac{f(b)-f(a)}{b-a}$
(8)turning pt: where a graph "turns" from mereasing to decreasing or vire versa
Ex 1 Are the fur equal? $f(x)=\frac{(3 x+1)(x-4)}{x-4}$ and $g(x)=3 x+1$

Ex Classify each of the base graphs (pg (7) as even, odd or neither.
2.3 (cont)

Ex 3 Find domain.
(a) $f(x)=\frac{2 x+1}{(x-2)^{2}}$
(b) $g(x)=\frac{3 x^{2}+1}{5 x^{2}+2}$
(c) $h(x)=\sqrt{7-2 x}$
(d) $k(x)=\sqrt{2+x-x^{2}}$
2.3 (cont)

Ex 4 state domain, intercepts, turning pts, intervals where graph is increasing and decreasing.
(a)

(b)

Ex 5 Find aug rate of charge from 3 to 3 th, for $\quad f(x)=x^{3}$

3.6 Transformations of Graphs

TYPES OF TRANSFORMATIONS TO $y=f(x)$

(Assume c is a constant such that $c \in \mathbb{R}, c>0$.)
(For all examples in the last column of this table, we'll use $y=f(x)=x^{2}$ as the base or parent function graph.)

1. Shift: $h(x)=f(x) \pm c$	Shifts graph up or down by c units (if we add c, shift up; if we subtract c, shift down)	$y=x^{2}+2$ shifts graph 2 units up
$h(x)=f(x \pm c)$	Shifts graph left or right by c units (if we add c, shift left; if we subtract c, shift right)	$y=(x-3)^{2}$ shifts graph 3 units right
2. Reflection: $g(x)=-f(x)$	Reflects graph vertically (across x-axis)	$\begin{aligned} & y=-x^{2} \\ & \text { reflects graph vertically } \end{aligned}$
$g(x)=f(-x)$	Reflects graph horizontally (across y-axis)	$\begin{aligned} & y=(-x)^{2} \\ & \text { reflects graph horizontally } \end{aligned}$
3. Stretch/Shrink: $k(x)=c f(x)$	Stretches/shrinks graph vertically (if $c>1$, it's a stretch; if $0<c<1$, it's a shrink)	$\begin{aligned} & y=5 x^{2} \\ & \text { stretches graph vertically by } \\ & \text { factor of } 5 \end{aligned}$
$k(x)=f(c x)$	Stretches/shrinks graph horizontally (if $c>1$, it's a shrink; if $0<c<1$, it's a stretch)	$y=(4 x)^{2}$ shrinks graph horizontally by one quarter

Note: ALL the vertical effects or changes to the graph appear "outside" the function, that is, outside the base or parent function that defines the overall shape. ALL the horizontal effects or changes to the graph appear "inside" the function, that is, before we perform the essence of the function. In the above examples, the main shape of the graph is the parabola given by $y=f(x)=x^{2}$. So, any algebraic change that happens before we square anything is "inside" the function, and any change that happens after the square is "outside" the function.

Note also that all the vertical shifts, stretches and shrinks are "intuitive," meaning that they're as expected. Adding two outside the function, for example, shifts the graph up, and we would expect a positive vertical shift to be up. Also, the horizontal shifts, stretches and shrinks are all "counter-intuitive," meaning that they're the opposite of what we'd expect. For example, adding three inside the function shifts the graph to the left by three units, which is perhaps the opposite of what one would expect from a positive horizontal change. Adding three inside the function means a smaller x-value is needed to produce the same y-value as before the shift. Because a smaller x-value is needed, we shift left instead of right.

Warning: Make sure to do all the reflections and shrink/stretch transformations FIRST before the shifts, when graphing these transformed functions. If you do the shifts first, you can get the wrong graph very easily.

Keep in mind that we can always use the default, back-up strategy of plotting lots of points and connecting the dots to graph any function. This method of understanding the transformations of graphs, along

2.3 (cont)

Ex b If f is increasing throughout its

Pf Assume x_{1} and x_{2} are both in domain of $f(x)$ such that $x_{1} \neq x_{2}$.

Then either $x_{1}>x_{2}$ or $x_{1}<x_{2}$.
Case 1: $\quad x_{1}<x_{2}$
By defer of increasing, $f\left(x_{1}\right)<f\left(x_{2}\right)$.

$$
\Rightarrow \quad f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

\Rightarrow by left, $f(x)$ is $1-1$.
Case 2: $\quad x_{1}>x_{2}$
Then by defer \& increasing $f\left(x_{2}\right)<f\left(x_{1}\right)$

$$
\Rightarrow \quad f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

\Rightarrow again by defoe, $f(x)$ is $1-1$.
2.4 Transformations of Functions

Vocab/Defus
(1) Translation/Shift: $\quad y-k=f(x-h) \quad k>0, h>0$
shift shift h to right
upk
(2) Reflection: (a) $y=-f(x)$ vertical veflection (across x-axis)
(b) $y=f(-x)$ horizontal reflection (across y-axas)
(3) Stretch/Shrink (or Dilation/Compression):
(a) $y=a f(x)$ vertical stretch if $a>1$
" shruite if $0<a<1$
(b) $y=f(a x)$ horizontal stretch if $0<a<1$
2.4 (cont)

Ex 1 write equ of $f(x)$ based on graph.
(a)

(b)

Ex2 Given $f(x)$

Graph
(a) $y-1=f(x-2)$
(b) $y=\frac{1}{2} f(-x)+3$

2,4 (cont)
Ex3 Graph these curves.
(a) $y=-3|x+4|$
(b) $y=-\frac{1}{2}(x+2)^{2}+3$
(c) $y=-\sqrt{x+4}$

