Math1010
 Formulas to Memorize

Lines/2d Coordinates:

Distance formula (to find distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$)

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Midpoint formula (to find midpoint between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$)

$$
\text { midpoint }=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Slope formula (to find slope of line between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$)

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Slope-Intercept form of a line, where $\mathrm{m}=$ slope and $(0, \mathrm{~b})$ is y-intercept of the line.

$$
y=m x+b
$$

Point-slope form of a line, given the point $\left(x_{1}, y_{1}\right)$ and slope m.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Parallel slope—if two lines are parallel, their slope is the same.
Perpendicular slope-if two lines are perpendicular and one line has slope m, then the other line has slope $\frac{-1}{m}$.

Graphing-compared to base graph $y=f(x)$, where $c>0$

1. Shifts: $\quad h(x)=f(x)+c \quad==>$ shifts graph up by c $h(x)=f(x)-c \quad==>$ shifts graph down by c $h(x)=f(x+c) \quad==>$ shifts graph left by c $h(x)=f(x-c) \quad==>$ shifts graph right by c
2. Reflections: $g(x)=-f(x)==>$ vertical reflection $g(x)=f(-x)==>$ horizontal reflection

Domain:

1. For $\frac{f(x)}{g(x)}, g(x) \neq 0$
2. For $\sqrt{f(x)}, f(x) \geq 0$
3. For $\log _{a} f(x), f(x)>0$

Rules of Exponents:

$$
\begin{gathered}
a^{m} \cdot a^{n}=a^{m+n} \\
\frac{a^{m}}{a^{n}}=a^{m-n} \\
(a b)^{m}=a^{m} b^{m} \\
\left(a^{m}\right)^{n}=a^{m n} \\
\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}} \\
a^{0}=1, \text { if } a \neq 0 \\
a^{-m}=\frac{1}{a^{m}} \\
\left(\frac{a}{b}\right)^{-m}=\left(\frac{b}{a}\right)^{m} \\
a^{\frac{1}{n}}=\sqrt[n]{a} \\
\frac{m}{n}=\sqrt[n]{a^{m}} \\
\sqrt[n]{a^{n}}=a, \text { if } \mathrm{n} \text { is odd } \\
\sqrt[n]{a^{n}}=|a|, \text { if } \mathrm{n} \text { is even }
\end{gathered}
$$

Polynomials:
Difference of Two Squares $\quad u^{2}-v^{2}=(u+v)(u-v)$
Factoring/Multiplying out squares: $(u+v)^{2}=u^{2}+2 u v+v^{2}$ and $(u-v)^{2}=u^{2}-2 u v+v^{2}$

Quadratic formula-used to solve a quadratic equation of the form $a x^{2}+b x+c=0$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}
$$

Logarithms:
Definition-- $\quad \log _{a} x=y<==>\quad a^{y}=x$
Properties:

1. $\log _{a}(x y)=\log _{a} x+\log _{a} y$
2. $\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y$
3. $\log _{a}\left(x^{m}\right)=m \log _{a} x$
