A-1

Note that \(\{ x : f(x) > a \} = \bigcap_{b \in \mathbb{Q}, b < a} \{ x : f(x) > b \} \) is measurable, \(\{ x : f(x) < a \} = \bigcap_{b \in \mathbb{Q}, b > a} \{ x : f(x) < b \} \) is measurable, and \(\{ x : f(x) \in O \} \) is measurable for every open set \(O \) in \(\mathbb{R} \) since \(O \) may be decomposed into a countable union of open intervals.

Also, \(F := \{ A : f^{-1}(A) \text{ is measurable} \} \) is a sigma-algebra containing all open sets in \(\mathbb{R} \). It means that \(\mathcal{B}(\mathbb{R}) \subseteq F \). Thus, for every \(B \in \mathcal{B}(\mathbb{R}) \), \(f^{-1}(B) \) is measurable and we’re done.

A-2

(1)

\[
\| f_n g_n - f g \|_{L^1} \leq \| f_n g_n - f_n g \|_{L^1} + \| f_n g - f g \|_{L^1} \\
\leq \| f_n \|_{L^p} \| g_n - g \|_{L^q} + \| g \|_{L^q} \| f_n - f \|_{L^p} \\
\leq M_1 \| g_n - g \|_{L^q} + M_2 \| f_n - f \|_{L^p}
\]

which goes to 0 as \(n \to \infty \).

(2) Since \(g_n \to g \) in \(L^\infty \), \(g_n \) is bounded by \(M \) in \(L^\infty \)-norm, and when arbitrary \(\epsilon > 0 \) is chosen there is some \(N > 0 \) so that \(\| g_n - g \|_{L^\infty} < \epsilon \),
\[\|f_n g_n - f g\|_{L^1} \leq \|f_n g_n - f_n g\|_{L^1} + \|f_n g - f g\|_{L^1} \]
\[\leq \|f_n (g_n - g)\|_{L^1} + \|(f_n - f)g\|_{L^1} \]
\[\leq \epsilon f_n \|_{L^1} + M (f_n - f) \|_{L^1} \]
\[\leq \epsilon M' + M \|f_n - f\|_{L^1} \]

and the result follows from arbitrariness of \(\epsilon \).

A-3

Let \(x_n' : y \mapsto \langle x_n, y \rangle, H \to \mathbb{C} \) be a sequence of elements in \(H^* \). Since \(\sup_n |x_n'(y)| = \sup_n |\langle x_n, y \rangle| \leq M_y < \infty \) for each \(y \in H \), by uniform boundedness principle we have \(\|x_n'\| \) is bounded by \(M \) in \(n \), Therefore, \(\|x_n'\| \geq \sup_{\{y \in H, \|y\| = 1\}} |\langle x_n, y \rangle| = \|x_n\| \) for every \(n \).

A-4

If \(x \in L^p \cap L^r \), then \(x \chi_{x>1} \in L^p \subseteq L^q \) and \(x \chi_{x\leq 1} \in L^r \subseteq L^q \). By Minkowski’s inequality, \(\|x\|_{L^q} \leq \|x \chi_{x>1}\|_{L^q} + \|x \chi_{x\leq 1}\|_{L^q} \), giving us the result.

A-5

Define \(d := \inf\{|x - z|, z \in M\} \). Pick a sequence \(\{y_n\} \subseteq M \) so that \(|x - y_n| < d + \frac{1}{n} \). Apply parallelogram’s law to \(\frac{1}{2}(x - y_n) \) and \(\frac{1}{2}(x - y_m) \), we have \(\frac{1}{2}(\|x - y_n\|^2 + \|x - y_m\|^2) = \|x - \frac{y_n + y_m}{2}\|^2 + \frac{1}{4}\|y_n - y_m\|^2 \).

Thus, \(\frac{1}{4}\|y_n - y_m\|^2 \leq \frac{1}{2}(2d^2 + \frac{2d}{n} + \frac{2d}{m} + \frac{1}{n^2} + \frac{1}{m^2}) - d^2 \), meaning \(\{y_n\} \) is Cauchy and hence \(y_n \to y \in M \). Therefore, \(d \leq \|x - y\| \leq \|x - y_n\| + \|y - y_n\| \to d \) as \(n \to \infty \), which shows that \(y \) is closest to \(x \) than any other element in \(M \) is.

If both \(y, y' \) minimize the distance to \(x \), then by parallelogram’s law applied to \(x - y, x - y' \), we have \(4d^2 = \|2x - y - y'\|^2 + \|y - y'\|^2 = 4\|x - \frac{y + y'}{2}\|^2 + \|y - y'\|^2 \geq 4d^2 + \|y - y'\|^2 \), forcing \(y = y' \).
To solve
\[1 - \cos(a + ib) = 1 - \frac{1}{2}(e^{i(a+ib)} + e^{i(a-ib)}) = 1 - \frac{1}{2}(e^{-b}(\cos(a) + i \sin(a)) + e^{b}(\cos(a) + i \sin(a))) = 0, \]

first we observe that the imaginary part of both sides are zero, so \(\sin(a) = 0 \). If \(\cos(a) = -1 \), then we have \(1 + \frac{1}{2}(e^{-b} + e^{b}) = 0 \), which is impossible. If \(\cos(a) = 1 \), then we have \(2 = e^{b} + e^{-b} \), so \(b = 0 \). Therefore the zeros for \(1 - \cos(z) \) are \(\{2k\pi : k \in \mathbb{Z}\} \).

(i) The only isolated singularity is \(-1 \). Let \(z = -1 + bi \), we have
\[
|\sin\left(\frac{z}{z+1}\right)| = |\sin\left(\frac{-1+bi}{bi}\right)| = |\sin 1 + \frac{i}{b}|
\]
\[
= \left|\frac{1}{2i}(e^{i(1+\frac{i}{2})} - e^{-i(1+\frac{i}{2})})\right|
\]
\[
= \left|\frac{1}{2i}(e^{i-\frac{1}{2}} - e^{-i+\frac{1}{2}})\right| \to \infty \quad \text{as } b \to 0 + .
\]
However, if we let \(z = -1 + a \),
\[
|\sin\left(\frac{z}{z+1}\right)| = |\sin(1 - 1/a)| \leq 1 \quad \text{for every } a \neq 1.
\]
Thus \(0 \) is neither a pole or a removable singularity \(\Rightarrow \) it must be an essential singularity.

(ii) \(\sin(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!}(z - 1)^n = \sum_{n=0}^{\infty} (-1)^n \frac{f^{(n)}(1)}{n!}(1 - z)^n \) for every \(z \in \mathbb{C} \). Let \(z = \frac{w}{w+1} = 1 - \frac{1}{1+w} \), we have
\[
\sin\left(\frac{w}{w+1}\right) = \sum_{n=0}^{\infty} (-1)^n \frac{f^{(n)}(1)}{n!}(w + 1)^{-n} = \sum_{n=0}^{\infty} (-1)^n \frac{f^{(-n)}(1)}{(-n)!}(w + 1)^{n}.
\]
(iii) The coefficient of \(\frac{1}{1+w} \) is \(-f'(1) = -\cos(\frac{1}{2}) \cdot \frac{z+1-z}{(1+z)^2} \mid_{z=1} = -\frac{1}{4} \cos(\frac{1}{2}). \)
B-8

See B-10 of Spring 2011.

B-9

See B-6 of Fall 2007.

B-10

Rouche’s theorem states that if f and g are holomorphic on a closed disc D with circle C as its boundary, and $|f(z)| > |g(z)|$ on C, then f and $f + g$ has the same number of zeros inside C.

Take $f(z) = 8$, $g(z) = 2z^5 - z^3 + 3z^2 - z$, we find that $|f| > |g|$ on $\{ z : |z| = 1 \}$, thus $f + g = 2z^5 - z^3 + 3z^2 - z + 8$ has the same zeros as f on $\{ z : |z| < 1 \}$, namely no zeros. Since $|2z^5 - z^3 + 3z^2 - z| \neq 8$, $f(z) + g(z) \neq 0$ when $|z| = 1$. By the fundamental theorem of algebra, $f(z) + g(z)$ has 5 zeros on \mathbb{C}, thus it also has 5 zeros on $\{ z : |z| > 1 \}$.

4