Some results for locally compact Hausdorff spaces

Shiu-Tang Li

Finished: April 21, 2013
Last updated: November 2, 2013

The following materials are all taken from [Rudin]. Other references: [Munkres]; [Folland] sec 4.5; [Richard Bass] sec 20.9

1 General Stuff

Theorem 1.1. Suppose U is open in a locally compact Hausdorff space X, $K \subset U$, and K is compact. Then there is an open set V with compact closure s.t. $K \subset V \subset \overline{V} \subset U$. [Rudin p.37]

Theorem 1.2. (Urysohn’s lemma) Suppose X is a locally compact Hausdorff space, V is open in X, $K \subset V$, and K is compact. Then there exists an $f \in C_c(X)$ s.t. $\chi_K \leq f \leq \chi_V$. [Rudin p.39]

Remark 1.3. See also [Munkres] for another version of Urysohn’s lemma, which assumes that X is normal. The arguments are also slightly different.

Theorem 1.4. (Partition of unity) Suppose V_1, \ldots, V_n are open subsets of a locally compact Hausdorff space X, K is compact, and $K \subset V_1 \cup \cdots \cup V_n$. Then there exists $0 \leq h_i < \chi_{V_i}$, $1 \leq i \leq n$, so that $h_1(x) + \cdots + h_n(x) = 1$ for all $x \in K$. [Rudin p.40]

Remarks 1.5. (1) Must take a look at the original proof to see if h_i is continuous and compact supported. See also [245B, Notes 12: Continuous functions on locally compact Hausdorff spaces] of Terence Tao’s website. (2) Theorem 1. \Rightarrow Theorem 2. \Rightarrow Theorem 4. (3) See [Munkres] page 225. for
another version of partition of unity (on normal spaces).

Remarks 1.6. I skip the Riesz representation theorem.

Theorem 1.7. (Lusin’s theorem) Suppose X is a locally compact Hausdorff space, μ is a Radon measure on X, and μ is complete. If f is a complex measurable function on X, and there exists A s.t. $\mu(A) < \infty$, $f(x) = 0$ for $x \notin A$, then, given $\epsilon > 0$, there exists some $g \in C_c(X)$ so that $\mu(g \neq f) < \epsilon$, and we may arrange it so that $\sup_{x \in X} |g(x)| \leq \sup_{x \in X} |f(x)|$.

[Rudin p.55]

Remark 1.8. Wikipedia says Lusin’s theorem holds for second countable topological space. (?)

Theorem 1.9. Suppose X is a locally compact Hausdorff space, μ is a Radon measure on X, and μ is complete. For $1 \leq p < \infty$, $C_c(X)$ is dense in $L^p(\mu)$. [Rudin p.69]

Definition 1.10. Let X be a locally compact Hausdorff space. A complex function f is said to vanish at infinity if for every $\epsilon > 0$, there exists a compact set $K \subset X$ s.t. $|f(x)| < \epsilon$ for all $x \in X \setminus K$. The class of all continuous function f on X which vanish at infinity is called $C_0(X)$. [Rudin p.70]

Theorem 1.11. Suppose X is a locally compact Hausdorff space. $C_0(X)$ is the completion of $C_c(X)$ w.r.t. supremum norm. [Rudin p.70]

2 One-point compactification

Theorem 2.1. Let (X,T) be a Hausdorff space. Let ∞ be a point not in X, and let $X^* := X \cup \{\infty\}$. Define $T^* := T \cup T'$, where $T' := \{U \subset X^* : X^* \setminus U$ compact in $(X,T)\}$. We claim that T^* is a topology for X^*.

Proof. (1) $\varnothing \in T \subset T^*$. Since $X^* \setminus X^* = \varnothing$, which is compact in (X,T), $X^* \in T' \subset T^*$.

(2) Let $\{U_\alpha\}_{\alpha \in I} \subset T'$. We may write each $U_\alpha = (X \setminus K_\alpha) \cup \{\infty\}$, K_α is compact in (X,T). We have $\bigcup_{\alpha \in I} U_\alpha = \bigcup_{\alpha \in I} (X \setminus K_\alpha) \cup \{\infty\} = (X \setminus \bigcap_{\alpha \in I} K_\alpha) \cup \{\infty\}$, which is still in T' (The intersection of compacts is a compact set since X is Hausdorff). For $A_1 \in T$, $A_2 = (X \setminus K) \cup \{\infty\} \in T'$,
$A_1 \cup A_2 = X \setminus ((X \setminus A_1) \cap K) \in T' \subset T^*$, where $(X \setminus A_1) \cap K$ is compact again because X is Hausdorff.

(3) Let $U_1, \cdots , U_n \in T'$, and we write each $U_j = (X \setminus K_j) \cup \{\infty\}$, K_j is compact in (X,T). Therefore, $\bigcap_{j=1}^{n} U_j = \bigcap_{j=1}^{n} (X \setminus K_j) \cup \{\infty\} = (X \setminus \bigcup_{j=1}^{n} K_j) \cup \{\infty\} \in T' \subset T^*$. For $A_1 \subseteq T$, $A_2 = (X \setminus K) \cup \{\infty\} \in T'$, $A_1 \cap A_2 = (X \setminus K) \cap A_1 \in T \subseteq T^*$. \hfill \Box

When (X,T) is a locally compact Hausdorff space, we have the following result:

Theorem 2.2. Let (X,T) be a locally compact Hausdorff space. Then the one-point compactification (X^*,T^*) as shown in Theorem 2.1 is a compact Hausdorff space. [Richard Bass, real analysis, Sec 20.9]

Remark 2.3. (X,T) coincides with the subspace topology induced from (X^*,T^*).

Theorem 2.4. Let (X,T) be a locally compact Hausdorff space. Then every function $f : E \rightarrow \mathbb{R}$ belongs to $C_0(X)$ if and only if the extension $\hat{f} : X^* \rightarrow \mathbb{R}$, $\hat{f}(\infty) = 0$, $\hat{f}(x) = f(x)$ for $x \in X$ is a continuous function on (X^*,T^*).

Proof. Let $f \in C_0(X)$. For any V open in \mathbb{R}, if $0 \notin V$, then $\hat{f}^{-1}(V) = f^{-1}(V) \in T$. If $0 \in V$, then $\hat{f}^{-1}(V) \setminus \{\infty\} = f^{-1}(V) \supset X \setminus K$ for some compact set K in (X,T). It follows that $X \setminus f^{-1}(V)$ is a compact set in (X,T) (since it is a closed subset of K). As a result, $\hat{f}^{-1}(V) = \{\infty\} \cup f^{-1}(V) = \{\infty\} \cup (X \setminus f^{-1}(V))) \in T' \subset T^*$, which proves $\hat{f} \in C(X^*)$.

Conversely, let $\hat{f} \in C(X^*)$. For any V open in \mathbb{R}, if $0 \notin V$, then $f^{-1}(V) = \hat{f}^{-1}(V) \in T$. If $0 \in V$, then $\hat{f}^{-1}(V) = (X \setminus K) \cup \{\infty\}$, K compact in (X,T), and thus $f^{-1}(V) = X \setminus K \in T$. This proves f is continuous on (X,T), and actually, that $f^{-1}(V) = X \setminus K$ for $0 \in V$ is exactly equivalent to the fact that f vanishes at infinity. \hfill \Box

Theorem 2.5. Let (X,T) be a locally compact Hausdorff second countable space (LCCB). Then the one-point compactification (X^*,T^*) as shown in Theorem 2.1 is second countable.

Proof. We first notice that the collection \mathcal{C} of all open sets with compact closure form a basis for T. To see \mathcal{C} is a basis, first, from the definition of locally compact space we know that every $x \in X$ is covered by some open set
in C. Second, for $C_1, C_2 \in C$, and $x \in C_1 \cap C_2$, there exists some open neighborhood of U of x so that $U \subset C_1 \cup C_2$, and we have $U \subset \overline{C_1 \cup C_2} = \overline{C_1} \cup \overline{C_2}$. This implies U is compact, and $U \in C$. To see C generates T, for any open set U that contains x, there exists some V with compact closure s.t. $x \in V \subset U \subset V \subset U$ (Theorem 1.1).

Since (X, T) is second countable, every basis has a countable subfamily that is still a basis for T. Therefore, we may apply this result to C above to get a countable basis $B := \{B_1, B_2, \cdots\}$, where each $B_j \in B$ has compact closure.

Define $B^* := B \cup B'$, where $B' := \{(X \setminus \bigcup_{j=1}^N \overline{B_{n_j}}) \cup \{\infty\} : \{B_{n_j}\}_j$ is a subsequence of $\{B_n\}_n, N \in \mathbb{N}\}$. To see B^* is a basis in X^*, first we note that for every $x \in X^*$ is covered by some $B \in B^*$. Second, for $B_1, B_2 \in B$ (resp. B'), $x \in B_1 \cap B_2$, there exists some $B_3 \in B$ (resp. B') so that $x \in B_3 \subset B_1 \cap B_2$. For $B_1 \in B, B_2 \in B'$, $B_1 \cap B_2$ is an open set in X, so there exists some $B_3 \in B$ so that $x \in B_3 \subset B_1 \cap B_2$ (Since B is a basis for (X, T)). To see B^* generates T^*, the only nontrivial fact to prove is that for any open set U in T^* of form $(X \setminus K) \cup \{\infty\}$, K compact in (X, T), $x = \{\infty\} \in U$, there exists some $B \in B'$ so that $x \in B \subset U$. This is due to the fact that since K is compact in (X, T), we may find some $\{B_{m_1}, \cdots, B_{m_k}\} \subset B$ that covers K, and it follows that $x \in (X \setminus \bigcup_{j=1}^k \overline{B_{m_j}}) \cup \{\infty\} \subset U$.

Therefore, B^* is a countable basis for (X^*, T^*), and the proof is complete.

Corollary 2.6. Let (X, T) be a locally compact Hausdorff second countable space (LCCB). Then X is metrizable.

Proof. By the previous theorems, the one-point compactification (X^*, T^*) is second countable and compact Hausdorff. Since for compact Hausdorff spaces, second countability is equivalent to metrizability, (X^*, T^*) is metrizable. Therefore, as a subspace of a metric space, (X, T) is also a metrizable topological space.