Definition 1. Let $A : [0, a] \to \mathbb{R}$ be a RC function of finite variation. We define an finitely additive set function μ on $([0, a], \mathcal{F})$ by $\mu([0, t]) := A_t$ for any $0 \leq t \leq a$, where \mathcal{F} is the collection of any finite union of sets of form $\{0\}$ or $(c, d]$.

Theorem 2. (Caratheodory Extension Theorem) There exists a unique signed measure μ^* on $([0, a], \mathcal{B}([0, a]))$ so that $\mu^*(E) = \mu(E)$ for all $E \in \mathcal{F}$, where μ is defined in Definition 1.

Proof. Decompose $A = A^1 - A^2$, where A^1, A^2 are both RC increasing functions. Write $\mu = \mu^1 - \mu^2$, where $\mu^1([0, t]) = A^1_t$ and $\mu^2([0, t]) = A^2_t$, and it’s easily seen that μ^1, μ^2 are two finitely additive set functions on $([0, a], \mathcal{F})$. By [Theorem 1.2, Varadhan], for any $D_n \in \mathcal{F}$, $D_n \downarrow \emptyset$, we have $\mu^1(D_n) \downarrow 0$ and $\mu^2(D_n) \downarrow 0$. Therefore, by [Theorem 1.3, Varadhan], there exists two positive measures $(\mu^1)^*$ and $(\mu^2)^*$ on $([0, a], \mathcal{B}([0, a]))$, so that $(\mu^1)^*(E) = \mu^1(E)$ and $(\mu^2)^*(E) = \mu^2(E)$ for all $E \in \mathcal{F}$. We then define $\mu^* := (\mu^1)^* - (\mu^2)^*$, and the proof of existence is complete.

The uniqueness of μ^* follows from the monotone class theorem.

Definition 3. The measure μ^* constructed in Theorem 2 is called the Lebesgue-Stieltjes measure associated with A.

Lebesgue-Stieltjes integral

Since the Lebesgue-Stieltjes measure is a measure defined on $([0, a], \mathcal{B}([0, a]))$, any $f : [0, a] \to \mathbb{R}$ is a candidate for $\int_{[0, a]} f(s) \, dA_s$ to make sense.
We first consider the case that A is increasing on $[0, a]$. It is a routine job to define $\int_{[0,a]} f(s) \, dA_s$ for f simple, f bounded Borel measurable, and then f positive Borel measurable. For arbitrary Borel measurable function f, we decompose it into $f^+ - f^-$, and define $\int_{[0,a]} f(s) \, dA_s := \int_{[0,a]} f^+(s) \, dA_s - \int_{[0,a]} f^-(s) \, dA_s$ if at least one of these two integrals is finite.

For A (RC) of finite variation on $[0, a]$, we write $A = A^1 - A^2$, where A^1, A^2 are both RC increasing functions on $[0, a]$. The integral $\int_{[0,a]} f(s) \, dA_s := \int_{[0,a]} f(s) \, dA^1_s - \int_{[0,a]} f(s) \, dA^2_s$, where we require at least one of these two integrals to be finite.

Note that we may also define the Lebesgue-Stieltjes measure on $([a, b], B([a, b]))$. It follows the same construction procedure.

Decomposition of dA_s

By [Section 1.3, Chung], when A is RC increasing on $[0, a]$, we may decompose it into a convex combination of three different increasing functions: a RC discrete increasing function, a singular continuous increasing function (not identically zero but with zero derivatives a.e.), and an absolutely continuous increasing function.

This implies dA_s can be decomposed into three parts. Usually, it is the most difficult to compute the Lebesgue-Stieltjes integral when A is singular continuous. On the other hand, when A is absolutely continuous, we have the following result:

Theorem 4. Let A be absolutely continuous, and let f be a bounded Borel measurable function on $[0, a]$. Then $\int_{[0,a]} f(s) \, dA_s = \int_{[0,a]} f(s) A'_s \, ds$.

Proof. Monotone class theorem. \quad \square

Total variation $|dA_s|$ of dA_s

Let us recall the definition of signed measure, and its decomposition theorems. Our main reference is [Chap 2.10, James Yeh].

Definition 5. [Definition 2.10.1, James Yeh] Given a measurable space (X, \mathcal{F}). A set function λ on \mathcal{F} is called a signed measure on \mathcal{F} if it satisfies the following conditions:
(1) \(\lambda(E) \in (-\infty, \infty] \) for every \(E \in \mathcal{F} \) or \(\lambda(E) \in [-\infty, \infty) \) for every \(E \in \mathcal{F} \).

(2) \(\lambda(\emptyset) = 0 \).

(3) countable additivity: for every disjoint sequence \(\{E_n : n \in \mathbb{N}\} \) in \(\mathcal{F} \),
\[
\sum_{n=1}^{\infty} \lambda(E_n) \text{ exists in } \mathbb{R} \text{ and } \sum_{n=0}^{\infty} \lambda(E_n) = \lambda(\bigcup_{n=1}^{\infty} E_n).
\]

If \(\lambda \) is a signed measure on \(\mathcal{F} \), the triple \((X, \mathcal{F}, \lambda) \) is called a signed measure space.

Theorem 6. (Hahn Decomposition of Signed Measure Spaces) [Theorem 2.10.14, James Yeh] For an arbitrary signed measure space \((X, \mathcal{F}, \lambda) \), a Hahn decomposition exists and is unique up to null sets of \(\lambda \), that is, there exist a positive set \(P \) and a negative set \(N \) for \(\lambda \) such that \(P \cap N = \emptyset \) and \(P \cup N = X \), and moreover if \(P' \) and \(N' \) are another such pair, then \(P \triangle P' \) and \(N \triangle N' \) are null sets for \(\lambda \).

Theorem 7. (Jordan Decomposition of Signed Measures) [Theorem 2.10.21, James Yeh] Given a signed measure space \((X, \mathcal{F}, \lambda) \), a Jordan decomposition for \((X, \mathcal{F}, \lambda) \) exists and is unique, that is, there exists a unique pair \(\{\mu, \nu\} \) of positive measures on \((X, \mathcal{F}) \), at least one of which is finite, such that \(\mu \perp \nu \) and \(\lambda = \mu - \nu \). Moreover with an arbitrary Hahn decomposition \(\{P, N\} \) of \((X, \mathcal{F}, \lambda) \), if we define two set functions \(\mu \) and \(\nu \) on \(\mathcal{F} \) by setting \(\mu(E) = \lambda(E \cap P) \) and \(\nu(E) = -\lambda(E \cap N) \) for all \(E \in \mathcal{F} \), then \(\{\mu, \nu\} \) is a Jordan decomposition for \((X, \mathcal{F}, \lambda) \).

Definition 8. [Definition 2.10.22, James Yeh] Given a signed measure space \((X, \mathcal{F}, \lambda) \). Let \(\mu \) and \(\nu \) be the unique positive measures on \(\mathcal{F} \), at least one of which is finite, such that \(\mu \perp \nu \) and \(\lambda = \mu - \nu \). Let us call \(\mu \) and \(\nu \) the positive and negative parts of \(\lambda \) and write \(\lambda^+ \) for \(\mu \) and \(\lambda^- \) for \(\nu \). The total variation of \(X \) is a positive measure \(|\lambda| \) on \(\mathcal{F} \) defined by \(|\lambda|(E) = \lambda^+(E) + \lambda^-(E) \) for \(E \in \mathcal{F} \).

Since \(dA \) on \(([0, a], \mathcal{B}([0, a])) \) is a signed measure, we may find \(P, N \in \mathcal{B}([0, a]) \), \(P \cup N = [0, a] \), \(P \cap N = \emptyset \), so that \(dA = \mu - \nu \), where \(\mu(E) = dA(E \cap P) \geq 0 \) and \(\nu(E) = -dA(E \cap N) \leq 0 \) for all \(E \in \mathcal{B}([0, a]) \). Therefore, we may define the total variation \(|dA| \) of \(dA \) by \(|dA| := \mu + \nu \).

It’s easily seen that \(\int_{[0,a]} f \cdot (1_P - 1_N) \, dA = \int_{[0,a]} f \cdot |dA| \) for \(f \in \mathcal{B}([0, a]) \).

Next, we show the connection between the variation of signed measures and the variation of a BV function. (Thanks for the assistance by Wei-Da}
We also assume that \(A_0 = 0 \). We claim that \(dV = |dA| \), as a measure on \([0, a], \mathcal{B}([0, a])\).

Proof. First, it is easily seen that the identity holds for \(|dA(s, t)| = |A(t) - A(s)| \leq V[s, t] = V(t) - V(s) = dV(s, t) \) for all intervals \((s, t) \subseteq [0, a] \). By the monotone class theorem, \(|dA(B)| \leq dV(B) \) for any \(B \in \mathcal{B}([0, a]) \). Now, let \(\{P, N\} \) be the Hahn decomposition of \((0, a], \mathcal{B}([0, a]), A)\). For any \(E \in \mathcal{B}([0, a]) \), we have \(|dA|(B) = dA(B \cap P) - dA(B \cap N) \leq dV(B \cap P) + dV(B \cap N) = dV(B) \).

\[
dV \leq |dA|: \text{ since } dV(s, t] = V(t) - V(s) = \sup \Delta \sum |A_{t_i} - A_{t_{i-1}}| \leq \sup \Delta \sum |dA|(t_i - t_{i-1}) = |dA|(s, t]. \text{ The rest of the proof follows from our old friend, the monotone class theorem.} \]

Properties of Lebesgue-Stieltjes integral

Throughout this section we write \(\int_0^t f(s) \, dA_s := \int_{[0,t]} f(s) \, dA_s \).

Theorem 10. (Right continuity) Let \(\int_0^a |f(s)||dA_s| < \infty \), where \(f \in \mathcal{B}([0, a]) \). Then \(g(t) := \int_0^t f(s) \, dA_s \) is RC on \((0, a]\).

Proof. Dominated convergence theorem. \(\square \)

Theorem 11. Let \(\int_0^a |f(s)||dA_s| < \infty \), where \(f \in \mathcal{B}([0, a]) \). Then \(g(t) := \int_0^t f(s) \, dA_s \) is of BV on \([0, a]\).

Proof. \(g(t) \) is the difference of two increasing functions on \([0, a]\). \(\square \)

Theorem 12. (Associativity) Let \(f, g \) be as above. Let \(h \in \mathcal{B}([0, a]) \) so that \(\int_0^a |h(s)||dg_s| < \infty \) or \(\int_0^a |h(s)f(s)||dA_s| < \infty \). Then \(\int_0^a h(s) \, dg_s = \int_0^a h(s) f(s) \, dA_s \).

Proof. First, it is easily seen that the identity holds for \(h(s) = 1_{(a,b]}(s) \). By the monotone class theorem, the identity holds for all bounded Borel measurable \(h \)’s.

Let \(\{P, N\} \) be the Hahn decomposition of \(dA \). This implies \(\{P', N'\} \) is the Hahn decomposition of \(dg \), where \(P' = (\{f \geq 0\} \cap P) \cup (\{f < 0\} \cap N), N' = (\{f \geq 0\} \cap N) \cup (\{f < 0\} \cap P) \). The decomposition of \(dg \) follows from taking \(h = 1_{A \cap P'} \) and \(h = 1_{A \cap N'} \).
For arbitrary \(h \in \mathcal{B}([0, a]) \) so that \(\int_0^a |h(s)| \, dg_s < \infty \) or \(\int_0^a |h(s)f(s)| \, dA_s < \infty \), we write \(h = h^+ - h^- = h^+1_{P^+} + h^+1_{P^r} - h^-1_{N^-} - h^-1_{N^r} \). We then approximate each component with bounded Borel measurable functions, using the monotone convergence theorem.

Remarks 13. (1) We say \(f \) satisfies property (*) if \(f \in \mathcal{B}([0, a]) \) and \(\int_0^a |f(s)| \, dA_s < \infty \). When \(f \) is continuous on \([0, a]\), \(f \) of \(BV \) on \([0, a]\), or \(f \) bounded Borel measurable, then \(f \) satisfies property (*). (2) If \(A \) is of \(BV \) on \([0, a]\), then \(A_+ \) is of \(BV \) on \([0, a]\), thanks to the Jordan decomposition for \(BV \) functions.

Theorem 14. (Integration by parts) [Revuz, Yor] Let \(A, B \) be two functions of finite variation. Then for any \(t > 0 \), \(A_tB_t = A_0B_0 + \int_0^t A_s \, dB_s + \int_0^t B_s \, dA_s = A_0B_0 + \int_0^t A_s \, dB_s + \int_0^t B_s \, dA_s + \sum_{0 < s \leq t} (A_s - A_s-) \cdot (B_s - B_s-) \).

Proof. Each term is equal to \(dA \otimes dB[0, t]^2 \).

Theorem 15. [Revuz, Yor] If \(F \) is a \(C^1 \)-function and \(A \) is of finite variation, then \(F(A) \) is of finite variation and

\[
F(A_t) = F(A_0) + \int_0^t F'(A_s-) \, dA_s + \sum_{0 < s \leq t} (F(A_s) - F(A_s-)) - F'(A_s-) (A_s - A_s-).
\]

Proof. 1. The first assertion follows from \(\sum_{\triangle} |F(A_t) - F(A_{t-1})| \leq \sum_{\triangle} |F'(\xi)| \cdot |A_t - A_{t-1}| \).

2. It’s easily seen that the identity holds for \(F \equiv c \), and if \(F_1, F_2 \) both satisfy the identity, so does \(F_1 + cF_2 \).

Step 1. I’d like to show the identity holds for \(F(x) = x^n \), using induction. First we perform integration by parts formula on \((A_t)^{n-1}\) and \(A_t \), and we have

\[
(A_t)^n = (A_0)^n + \int_0^t (A_s-)^{n-1} \, dA_s + \int_0^t A_s \, d(A_s)^{n-1}
+ \sum_{0 < s \leq t} (A_s - A_s-) \cdot ((A_s)^{n-1} - (A_s-)^{n-1}). \tag{1}
\]

By induction hypothesis, we have

\[
(A_t)^{n-1} = (A_0)^{n-1} + \int_0^t (n-1)(A_s-)^{n-2} \, dA_s
+ \sum_{0 < s \leq t} (A_s)^{n-1} - (A_s-)^{n-1} - (n-1)(A_s-)^{n-2}(A_s - A_s-). \tag{2}
\]
Apply monotone class theorem to (2) above, for all bounded Borel measurable f we have
\[
\int_0^t f(s) d(A_s)^{n-1} = (n - 1) \int_0^t f(s)(A_s)_{n-2} dA_s \\
+ \sum_{0<s\leq t} f(s)(A_s)^{n-1} - f(s)(A_s_{n-1}) - (n - 1)f(s)(A_s)_{n-2}(A_s - A_s_{-}). \tag{3}
\]
Let $f(s) = A_s -$ in (3) and substitute (3) back to (1), we have
\[
(A_t^n) = (A_0^n) + \int_0^t (A_s)_{n-1} dA_s + (n - 1) \int_0^t (A_s_{n-1}) dA_s \\
+ \sum_{0<s\leq t} (A_s)_{n-1} - (A_s)_{n} - (n - 1)(A_s - A_s_{-}) \\
+ \sum_{0<s\leq t} (A_s - A_s_{-}) \cdot ((A_s)_{n-1} - (A_s_{-})_{n-1}) \\
= (A_0^n) + \int_0^t n(A_s_{n-1}) dA_s + \sum_{0<s\leq t} (A_s)^{n} - (A_s_{-})^{n} - n(A_s_{-})_{n-1}(A_s - A_s_{-}),
\]
which proves the claim made in Step 1.

Step 2. Fix K large so that $[-K, K]$ contains the image of $[0, t]$ under A. By Weierstrass approximation theorem, we may find a sequence of polynomials $\{p_n\}$ so that $p_n \to F'$ uniformly in $[-K, K]$, and $p_n(-K) = F'(-K)$ for all $n \in \mathbb{N}$. Now we let $P_n(x) := \int_{-K}^x p_n(y) dy + F(-K)$ for all $n \in \mathbb{N}$, and it follows that $P_n \to F$ uniformly in $[-K, K]$.

Step 3. Since A is of BV on $[0, t]$, we may decompose $A_s = B_s - C_s$, where B, C are increasing functions on $[0, t]$. We have
\[
\sum_{0<s\leq t} |A_s - A_s_{-}| \leq \sum_{0<s\leq t} |B_s - B_s_{-}| + \sum_{0<s\leq t} |C_s - C_s_{-}| \\
\leq B_t - B_0 + C_t - C_0 < \infty.
\]

Step 4. Let $\Delta A_s := A_s - A_s_{-}$.
\[
\left| \sum_{0<s\leq t} F(A_s) - P_n(A_s) - F(A_s_{-}) + P_n(A_s_{-}) - \left(F'(A_s_{-}) - p_n(A_s_{-}) \right) \cdot \Delta A_s \right| \\
\leq \sum_{0<s\leq t} |F'(A_s^n) - p_n(A_s^n)| \cdot |\Delta A_s| + |F'(A_s_{-}) - p_n(A_s_{-})| \cdot |\Delta A_s| \\
\to 0 \text{ as } n \to \infty
\]

Step 5. Approximate F using P_n. The proof is now complete. \qed

6
Corollary 16. Settings as in Theorem 15. Let f be a bounded Borel measurable function, then we have

\[
\int_0^t f(s) dF(A_s) = \int_0^t f(s) F'(A_{s-}) dA_s \\
+ \sum_{0<s\leq t} f(s) F(A_s) - f(s) F(A_{s-}) - f(s) F'(A_{s-}) \cdot \Delta A_s.
\]

Before proceeding to the next theorem, we would like to show that when A is of bounded variation on $[0, a]$, $A_0 := 0$, we may define $Y_t := \prod_{j=1}^\infty (1 + \Delta A_{a_j})$, where $\{a_1, a_2, \cdots\}$ is some enumeration of $\{0 \leq s \leq t : \Delta A_s \neq 0\}$. Note that $Y_0 = 1 + A_0$, and we define $Y_0 := 0$.

Here are a few remarks.

(1) We’d like to show the limit of $\prod_{j=1}^n (1 + \Delta A_{a_j})$ exists as n goes to infinity. For $n > m$, $|\prod_{j=1}^n (1 + \Delta A_{a_j}) - \prod_{j=1}^m (1 + \Delta A_{a_j})| \leq e^{\sum_{s\in[0,a]} |\Delta A_s|} \cdot \sum_{m+1 \leq j \leq n} |\Delta A_{a_j}|$, showing that $\prod_{j=1}^n (1 + \Delta A_{a_j})$ is Cauchy.

(2) The limit is independent of our choice of $\{a_j\}$. Let $\{b_1, b_2, \cdots\}$ be another enumeration of $\{0 \leq s \leq t : \Delta A_s \neq 0\}$. For each $n \in \mathbb{N}$, we may find $k = k(n) \in \mathbb{N}$ so that $\{b_1, b_2, \cdots, b_n\} \subset \{a_1, a_2, \cdots, a_k\}$. We may find n large so that $|\prod_{j=1}^n (1 + \Delta A_{b_j}) - \prod_{j=1}^k (1 + \Delta A_{a_j})|$ is small enough.

By (2), we may write $Y_t = \prod_{0 \leq s \leq t} (1 + \Delta A_s)$.

(3) Now we extend the definition of $Y_t = \prod_{0 \leq s \leq t} (1 + \Delta A_s) = \prod_{s \in I} (1 + \Delta A_s)$, where $I = [0, a]$, to arbitrary finite subinterval of $[0, a]$ or a single point in $[0, a]$, with the same approach of construction. The new definition is denoted by Y_I. Here are some properties of Y_I:

(3-1) For I_1, I_2 disjoint, $I_1 \cup I_2 = I$, $Y_I = Y_{I_1} \cdot Y_{I_2}$.

(3-2) For I_1, I_2 disjoint, $I_1 \cup I_2 = I$, $|Y_I - Y_{I_1}| \leq e^{\sum_{s \in I} |\Delta A_s|} \cdot \sum_{s \in I_2} |\Delta A_s|$.

The following ones are proved using (3-2):

(3-3) Y_I is of BV on $[0, a]$.

(3-4) If $I_n \uparrow I$, then $Y_{I_n} \to Y_I$.

7
\[(3-5) \quad Y_{t-} = \Pi_{0 \leq s < t}(1 + \Delta A_s) \text{; } \Delta Y_t = \Pi_{0 \leq s < t}(1 + \Delta A_s) \cdot \Delta A_s. \]

(4) We’d like to show \(Y_t = \sum_{0 \leq s \leq t} \Delta Y_s. \) Let \(s_{n,1} < s_{n,2} < \cdots < s_{n,n} \) be a reordering of \(\{a_1, \cdots, a_n\} \), we have

\[
Y_t = \lim_{n \to \infty} \Pi_{j=1}^n (1 + \Delta A_{s_{n,j}})
= \lim_{n \to \infty} \Pi_{j=1}^n (1 + \Delta A_{s_{n,1}}) + \sum_{m=2}^n (\Pi_{j=1}^m (1 + \Delta A_{s_{n,j}}) - \Pi_{j=1}^{m-1} (1 + \Delta A_{s_{n,j}}))
= \lim_{n \to \infty} \left((1 + \Delta A_{s_{n,1}}) + \sum_{m=2}^n \Delta A_{s_{n,m}} \cdot \Pi_{j=1}^{m-1} (1 + \Delta A_{s_{n,j}}) \right)
= 1 + \Delta A_0 + \sum_{0 < s \leq t} \Delta A_s \cdot \Pi_{0 \leq z < s} (1 + \Delta A_z)
= \sum_{0 \leq s \leq t} \Delta Y_s.
\]

We have used the bounded convergence theorem in the second last equality. It is bounded by \(e^{\sum_{s \in [0, a]} |\Delta A_s|} \), with counting measure \(\Delta A_s \).

Theorem 17. [Revuz. Yor] If \(A \) is a RC function of finite variation, \(A_0 = A_{0-} = 0 \), then \(Y_t := Y_0 \Pi_{0 \leq s \leq t} (1 + \Delta A_s) e^{A^c_t} \) is the only locally bounded solution of the equation \(Y_t = Y_0 + \int_0^t Y_s \cdot dA_s \), where \(A^c_t := A_t - \sum_{0 \leq s \leq t} \Delta A_s \).

Proof. Apply Theorem 14. to \(C_t := Y_0 \Pi_{0 \leq s \leq t} (1 + \Delta A_s) \) and \(D_t := e^{A^c_t} \), we have

\[
Y_0 \Pi_{0 \leq s \leq t} (1 + \Delta A_s) e^{A^c_t} = Y_0 + \int_0^t e^{A^c_s} dC_s + \int_0^t Y_0 \Pi_{0 \leq z < s} (1 + \Delta A_z) dD_s
= Y_0 + \int_0^t Y_0 e^{A^c_s} \cdot \Pi_{0 \leq z < s} (1 + \Delta A_z) d \sum_{0 \leq z \leq s} \Delta A_s
+ \int_0^t Y_0 \Pi_{0 \leq z < s} (1 + \Delta A_z) e^{A^c_s} dA^c_s
= Y_0 + \int_0^t Y_0 e^{A^c_s} \cdot \Pi_{0 \leq z < s} (1 + \Delta A_z) dA_s.
\]

Assume there are two locally bounded solutions with the same initial value \(Y_0 \), and we denote their difference by \(Z_t \). See [Revuz. Yor] for details. \(\square \)