Generation

- A full subcategory \mathcal{S} is **thick** if it is closed under:
 - direct summands,
 - suspensions,
 - cones.
- $\text{thick}_T(X) = \text{smallest thick subcategory of } T$ containing X.
- If $Y \in \text{thick}_T(X)$, then X *generates* Y.

Write $X \xrightarrow{\sim} Y$. This is constructive:

$X \rightsquigarrow \xrightarrow{\text{finite direct sum}} \xrightarrow{\text{suspensions}} \xrightarrow{\text{cones}} Y$.

- $\text{level}_T^L(Y) = \text{minimal number of cones}$

Examples

1. $\text{Perf}(R) = \text{perfect complexes}$
 Then $\text{thick}_T(R) = \text{Perf}(R)$.

2. M a f.g. R-module then $\text{level}_T^L(M) = \text{pd}_R(M) + 1$.

3. $\text{thick}_T(k) = \text{complexes with bounded finite length homology}$

Theorem

Let R be a k-algebra essentially of finite type over k. Then TFAE

1. R is a locally complete intersection,
2. R is proxy small in $D(R^e)$ where $R^e = R \otimes_k R$.

Proof sketch:

1. \implies (2): R c.i. \implies R^e c.i. \implies R is proxy small in $D(R^e)$.
2. \implies (1): For $X \in D_f(R)$ one has

$$D(R^e) \xrightarrow{-\otimes_k X} D(R)$$

$$R \xrightarrow{R^e} W \implies R \otimes_k^L X = X \xrightarrow{R^e} W \otimes_k^L X \in \text{thick}_R(\text{Add}(R))$$

So $W \otimes_k^L X$ is small. It remains to show $\text{Supp}_R(X) = \text{Supp}_R(W \otimes_k^L X)$. Idea:

Support \leftrightarrow Localizing subcategory.

Characterizations

TFAE

1. X regular.
2. every object in $D_f(R)$ is small.

TFAE

1. R a locally complete intersection.
2. every object in $D_f(R)$ is proxy small.

Proxy small objects

A complex $X \in D(R)$ is **small** if

$$R \xrightarrow{\sim} X$$

A complex $X \in D(R)$ is **proxy small** if there exists a small object W, such that

$$X \xrightarrow{\sim} W \text{ and } \text{Supp}_R(W) = \text{Supp}_R(X).$$

Examples

1. small \implies proxy small.
2. (R, m, k) local, and $K^R = \text{Koszul complex}$. Then
 (a) $k \xrightarrow{\sim} K^R$
 (b) $\text{Supp}_R(K^R) = \{m\} = \text{Supp}_R(k)$.

Lemma

For $X \in D_f(R)$ TFAE

1. X is proxy small.
2. X_p is proxy small $\forall p \in \text{Spec}(R)$.

References

