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Cover times of many random walkers on a discrete network
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The speed of an exhaustive search can be measured by a cover time, which is defined as the time it takes a
random searcher to visit every state in some target set. Cover times have been studied in both the physics and
probability literatures, with most prior works focusing on a single searcher. In this paper, we prove an explicit
formula for all the moments of the cover time for many searchers on an arbitrary discrete network. Our results
show that such cover times depend only on properties of the network along the shortest paths to the most distant
parts of the target. This mere local dependence contrasts with the well-known result that cover times for single
searchers depend on global properties of the network. We illustrate our rigorous results by stochastic simulations.

DOI: 10.1103/PhysRevE.109.014121

I. INTRODUCTION

Cover times measure the speed of exhaustive search and
have been studied in both the physics literature [1–15] and
the probability literature [16–25]. A cover time is defined as
the time it takes a random searcher to visit every state in
some target set of states (the target set is often taken to be
the entire state space). Cover times characterize the timescales
in a number of disparate applications [9], including computer
and internet search algorithms, animals collecting food and
other resources, the immune system hunting pathogens (e.g.,
viruses, bacteria), and robots cleaning an area or combing for
dangers (e.g., mines, explosives, chemical leaks).

To describe precisely, let X = {X (t )}t�0 denote the path of
a searcher (i.e., a random walk) on a discrete state space I (i.e.,
a network of nodes). Let S = {S(t )}t�0 denote the set of nodes
visited by the searcher by time t � 0,

S(t ) := ∪t
s=0X (s).

The cover time of some target set of nodes UT ⊆ I is the time
it takes the searcher to visit every node in UT:

σ := inf{t > 0 : UT ⊆ S(t )}.
Cover times can be contrasted with an alternative measure

of search time called a first passage time (FPT) [26]. FPTs
measure the time it takes a searcher to find a single target
state (possibly out of a set of target states) and are defined
mathematically as

τ := inf{t > 0 : X (t ) ∈ UT}.
While FPTs have been studied more extensively than cover
times, cover times are the important observable in any sce-
nario requiring the discovery of multiple targets.

*lawley@math.utah.edu

Analytical studies of cover times have mostly been carried
out in the limit of a large network [1,3,9,17,22–24]. In the
case of a Markovian, noncompact random walk on a large
network, the cover time of a large target set was shown to
obey a universal probability distribution of Gumbel form [9].
Notably, the only timescale in this limiting cover time proba-
bility distribution is the so-called global mean FPT, which is
the mean FPT to a given target node averaged over random
walks starting from all nodes in the network [9].

The purpose of this paper is to study cover times of many
searchers. Specifically, let {Xn}N

n=1 be N � 1 independent and
identically distributed (iid) realizations of a random walk X =
{X (t )}t�0. If SN = {SN (t )}t�0 denotes the set of nodes visited
by at least one of the N searchers by time t � 0,

SN (t ) := ∪N
n=1 ∪t

s=0 Xn(s) ⊆ I, (1)

then the cover time of UT ⊆ I of these multiple searchers is

σN := inf{t > 0 : UT ⊆ SN (t )}. (2)

In words, σN is the time needed for every node in the target
to be visited by at least one searcher. Prior works have argued
that the cover time for N searchers can be obtained by simply
rescaling the cover time of a single searcher [9,14]. In partic-
ular, it was shown that if N is not too large, then

σN ≈ σ/N. (3)

In this paper, we obtain an explicit formula for all the
moments of the many-searcher cover time. Specifically, we
prove that for any moment m ∈ (0,∞),

E
[
σ m

N

] ∼ Km

Nm/d
as N → ∞, (4)

where d � 1 is the smallest number of steps a searcher must
take to reach the farthest part of the target and the constant Km

depends on the jump rates of the network along these geodesic
paths to the farthest part of the target (Km is given explicitly

2470-0045/2024/109(1)/014121(8) 014121-1 ©2024 American Physical Society

https://orcid.org/0000-0002-3534-2102
https://orcid.org/0000-0003-2208-026X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.014121&domain=pdf&date_stamp=2024-01-17
https://doi.org/10.1103/PhysRevE.109.014121


HYUNJOONG KIM AND SEAN D. LAWLEY PHYSICAL REVIEW E 109, 014121 (2024)

X(0)

UT

far

FIG. 1. Example network. The searchers start at X (0) (blue
node), the red nodes are the target UT, and the yellow curves depict
the shortest paths a searcher can travel to cover the farthest part of
the target (large red node labeled U far

T ).

in Theorem 1, see Fig. 1 for an illustration). Throughout
this paper, f ∼ g denotes f /g → 1. We prove Eq. (4) in the
general setting that the searchers are continuous-time Markov
chains on a finite or countably infinite state space and the
target UT consists of finitely many states. We make only mild
assumptions on the network jump rates and the searcher initial
position probability distribution in order to avoid trivial cases
in which σN = 0 or σN = ∞ (see Theorem 1 for the precise
statement).

We make three comments on Eq. (4). First, comparing
Eq. (3) with Eq. (4) shows that the decay of σN slows down
markedly from N−1 to N−1/d for N sufficiently large (these
decay rates are identical if and only if d = 1, which is the
simple case that searchers need only take a single step to cover
the target).

Second, the integer d � 1 and the constant Km in Eq. (4)
depend only on the jump rates along the shortest path(s) from
the starting location(s) to the farthest part(s) of the target.
In particular, changes to the network outside these geodesic
path(s) do not affect σN for large N . This is in stark contrast
to the cover time of a single searcher σ , which depends on
the entire network [9]. The reason for this discrepancy is that
a single searcher (or a few searchers) may wander around
the network before covering the target, whereas cover times
for many searchers are determined by searchers which take a
direct path to cover the target.

Third, only the farthest parts of the target affect the integer
d � 1 and the constant Km in Eq. (4). That is, the many-
searcher cover time is unaffected by adding nodes or deleting
nodes from the target which are strictly closer than the farthest
parts of the target. For example, the cover time of the entire
network (i.e., UT = I) becomes identical to the cover time of
only the nodes which are farthest from the initial searcher
positions as N → ∞.

The rest of the paper is organized as follows. In Sec. II,
we prove Eq. (4) and give d and Km explicitly. In Sec. III, we
analyze Km in the case of a simple random walk on a periodic
lattice of arbitrary dimension. In Sec. IV, we illustrate our re-
sults with stochastic simulations. We conclude by discussing

relations to prior work and possible extensions. In particular,
we compare the results in the present paper to our recent
results for cover times of many diffusive (or subdiffusive)
searchers on a continuous state space [27].

II. GENERAL THEORY

We now present the general theory for the cover time for
many Markovian searchers on a discrete state space.

A. Inclusion-exclusion

Let X = {X (t )}t�0 be a continuous-time Markov chain
on a finite or countably infinite state space I . The dynam-
ics of X are encoded in its infinitesimal generator matrix
Q = {q(i, j)}i, j∈I [28]. The off-diagonal entries of Q (i.e.,
q(i, j) � 0 for i 	= j) are nonnegative and give the rate that
X jumps from i ∈ I to j ∈ I . The diagonal entries of Q are
nonpositive (i.e., q(i, i) � 0 for all i ∈ I) and are chosen so
that Q has zero row sums. Assume that supi∈I |q(i, i)| < ∞ so
that X cannot take infinitely many jumps in finite time.

Let {Xn(t )}N
n=1 be N iid realizations of X . For each subset

of states J ⊂ I , let τn(J ) denote the FPT of Xn to J ,

τn(J ) := inf{t > 0 : Xn(t ) ∈ J},
and define the corresponding fastest FPT

TN (J ) := min{τ1(J ), . . . , τN (J )}. (5)

Let SN (t ) denote the set of states visited by at least one
of the searchers by time t � 0 as in Eq. (1). For a finite set
of target states UT ⊆ I , define the cover time σN of these N
searchers as in Eq. (2).

By the inclusion-exclusion principle [29]

P (σN > t ) = P (∪i∈UT{TN (i) > t})

=
|UT|∑
i=1

⎛
⎝(−1)i−1

∑
J⊆UT,|J|=i

P (∩ j∈J{TN ( j) > t})

⎞
⎠

=
|UT|∑
i=1

⎛
⎝(−1)i−1

∑
J⊆UT,|J|=i

P (TN (J ) > t )

⎞
⎠, (6)

where the inner sum is over all subsets J of the target
UT of size |J| = i. Now, the mean of any nonnegative ran-
dom variable Z � 0 is given by the integral of its survival
probability [29]

E[Z] =
∫ ∞

0
P (Z > z) dz.

Therefore, setting t = s1/m for m ∈ (0,∞) and integrating
Eq. (6) from s = 0 to s = ∞ yields the following represen-
tation for the mth moment of the cover time σN in terms of the
mth moments of the fastest FPTs in (5):

E
[
σ m

N

] =
|UT|∑
i=1

⎛
⎝(−1)i−1

∑
J⊆UT,|J|=i

E[(TN (J ))m]

⎞
⎠. (7)
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B. Fastest FPTs

In light of Eq. (7), we now study moments of TN (J ) for
J ⊂ UT in order to study moments of σN . Let ρ denote the
initial distribution of X ,

ρ = {ρ(i)}i∈I = {P (X (0) = i)}i∈I ,

and define the support of ρ,

supp(ρ) := {i ∈ I : ρ(i) > 0}.
To avoid trivial cases, we make the following two assump-

tions. First, assume that the target is not entirely contained in
the support of the initial distribution

UT 	⊂ supp(ρ). (8)

Second, assume that for each state j ⊂ UT,

E[TN ( j)] < ∞ for some N � 1. (9)

If Eq. (8) is violated, then the searchers can cover the target
just by their initial placement (i.e., without moving) and the
problem is trivial. If Eq. (9) is violated, then E[σN ] = ∞
for all N � 1 and the problem is trivial. Note that Eq. (9) is
assured to hold if X is irreducible on a finite state space I .

If J ∩ supp(ρ) 	= ∅, then E[TN (J )] vanishes exponentially
fast as N → ∞. If J ∩ supp(ρ) = ∅, then Theorem 1 in
Ref. [30] implies

E[(TN (J ))m] ∼ �(1 + m/d (J ))

(A(J )N )m/d (J )
as N → ∞, (10)

where d (J ) � 1 is the smallest number of jumps that X must
make to reach J from supp(ρ) and A(J ) > 0 involves the jump
rates along such shortest paths. We now define d (J ) and A(J )
more precisely.

C. Defining d(J) and A(J)

Following Ref. [30], define a path P of length d ∈ Z�0

from i0 ∈ I to id ∈ I to be a sequence of d + 1 states in I:

P = (P (0), . . . ,P (d )) = (i0, i1, . . . , id ) ∈ Id+1 (11)

so that

q(P ( j),P ( j + 1)) > 0, for j ∈ {0, 1, . . . , d − 1}, (12)

where Q = {q(i, j)}i, j∈I is the generator of X . The condition
in Eq. (12) ensures that X has a strictly positive probability of
following the path P .

For a path P ∈ Id+1, let λ(P ) be the product of the rates
along the path

λ(P ) :=
d−1∏
i=0

q(P (i),P (i + 1)) > 0. (13)

Let dmin(I0, I1) ∈ Z�0 denote the length of the shortest path
from I0 ⊂ I to I1 ⊂ I:

dmin(I0, I1) := inf{d : P ∈ Id+1,P (0) ∈ I0,P (d ) ∈ I1}.
(14)

In words, dmin(I0, I1) is the smallest number of jumps that X
must take to go from I0 to I1. Define the set of all paths from

I0 to I1 with this minimum length dmin(I0, I1),

S (I0, I1)

:= {P ∈ Id+1 : P (0) ∈ I0,P (d ) ∈ I1, d = dmin(I0, I1)}.
(15)

Define

�(ρ, I1) :=
∑

P∈S(supp(ρ),I1 )

ρ(P (0))λ(P ). (16)

To unpack the meaning of �(ρ, I1) in words, first consider
the case that ρ(i0) = 1 for some i0 ∈ I , which means that
X (0) = i0 with probability one and supp(ρ) = i0. If there is
only one path with the minimum number of jumps dmin(i0, I1),
then �(ρ, I1) is merely the product of the jump rates along this
path [i.e., λ(P ) in Eq. (13)]. If there is more than one shortest
path, then �(ρ, I1) is the sum of the products of the jump rates
along these paths. Lastly, if ρ(i) 	= 1 for all i ∈ I (meaning
the initial searcher distribution is over multiple nodes), then
�(ρ, I1) sums the products of the jump rates along all the
shortest paths, where the sum is weighted according to ρ.

Now that we have defined dmin in Eq. (14) and � in
Eq. (16), we define d ( j) and A(J ) in Eq. (10) via

d (J ) = dmin(supp(ρ), J ) � 1,

A(J ) = �(ρ, J )

(d (J ))!
> 0.

D. Cover times

Having determined the large N behavior of the moments of
TN (J ) in Eq. (10), we now determine the large N behavior of
the moments of σN via Eq. (7). Define

d := sup
j∈UT

dmin(supp(ρ), j) � 1,

which is the smallest number of jumps required to reach the
farthest part of the target. Further, define the set of nodes
in the target set which are distance d � 1 from the initial
distribution:

U far
T := { j ∈ UT : dmin(supp(ρ), j) = d} ⊆ UT ⊆ I. (17)

Hence, Eqs. (7) and (10) imply

lim
N→∞

Nm/dE
[
σ m

N

]

=
|UT|∑
i=1

⎛
⎝(−1)i−1

∑
J⊆UT,|J|=i

lim
N→∞

Nm/dE[(TN (J ))m]

⎞
⎠

=
|U far

T |∑
i=1

⎛
⎝(−1)i−1

∑
J⊆U far

T ,|J|=i

lim
N→∞

Nm/dE[(TN (J ))m]

⎞
⎠

= Km,

where

Km := �

(
1 + m

d

) |U far
T |∑

i=1

⎡
⎣(−1)i−1

∑
J⊆U far

T ,|J|=i

(
d!

�(ρ, J )

) m
d

⎤
⎦,

(18)
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where the inner sum is over all subsets J of U far
T in Eq. (17) of

size |J| = i.
In summary, we have proven the following theorem.
Theorem 1. Under assumptions Eqs. (8) and (9), we have

that for any moment m ∈ (0,∞),

E
[
σ m

N

] ∼ Km

Nm/d
as N → ∞.

Theorem 1 shows that the simple scaling in Eq. (3) breaks
down for large N . Indeed, the large N decay of σN is in
general much slower than predicted by Eq. (3) except for
the case that d = 1. Further, while the cover time of a single
searcher depends on the entire network, Theorem 1 shows that
the cover time of many searchers only depends on network
properties along the shortest path(s) to the farthest part(s)
of the target. In particular, the many-searcher cover time is
unaffected by any changes to the network away from these
geodesic paths. In addition, the many-searcher cover time only
depends on the farthest parts of the target. Put another way,
the many-searcher cover time is unaffected by adding nodes
or deleting nodes from the target which are strictly closer than
the farthest parts of the target. For example, the cover time
of the entire network (i.e., UT = I) becomes identical to the
cover time of only the nodes which are farthest from the initial
searcher positions as N → ∞. We illustrate these points with
stochastic simulations in Sec. IV.

III. PERIODIC LATTICE IN ARBITRARY DIMENSION

Theorem 1 is a very general result that holds for Markovian
searchers on general discrete state spaces (i.e., random walk-
ers on networks of discrete nodes). Examining the formula in
Eq. (18) shows that while the constant prefactor Km depends
only on the network jump rates along the shortest path(s) from
the searcher initial position(s) to the farthest part(s) of the
target, this dependence is far from trivial. In this section, we
investigate Km in the case that the searchers are simple random
walks on periodic lattices, which is a case that has received
much attention for a single searcher [1–4,7,11,22,23]. We first
suppose that the lattice is two dimensional and then consider
a lattice of arbitrary dimension.

Consider a two-dimensional square lattice I with periodic
boundaries (i.e., a lattice wrapped around a two-dimensional
torus). Suppose all the searchers start at a single node i0 ∈ I:

P (X (0) = i0) = ρ(i0) = 1.

Suppose further that the number of nodes along each side of
the lattice is even and given by 2l � 2 (and hence the total
number of nodes is |I| = (2l )2 � 4). It follows that there is
a unique farthest node from the starting position i0 ∈ I which
we denote by i1 ∈ I and is

d = dmin(i0, i1) = 2l

jumps away from i0. Suppose the target UT ⊆ I is any set
containing i1, and thus U far

T in Eq. (17) is i1,

U far
T = i1 ∈ UT ⊆ I.

If all the jumps in the lattice have the same rate r > 0, then
� in Eq. (16) is given by

�(i0, i1) = r2l |S (i0, i1)|,

where |S (i0, i1)| is the number of paths from i0 to i1 with
the minimum length d = dmin(i0, i1) = 2l . Since there is only
one farthest target node (i.e., U far

T = i1), the constant Km in
Eq. (18) takes the form

Km = �(1 + m/(2l ))

rm

[
(2l )!

|S (i0, i1)|
]m/(2l )

. (19)

The number of shortest paths from i0 to i1 is

|S (i0, i1)| = 4

(
2l

l

)
. (20)

To see this, notice first that every path will have either all steps
up and right, up and left, down and right, or down and left
(and so four choices). Further, having made one of these four
choices, say up and right, there will be exactly l steps up and
l steps right, and thus there are

(2l
l

) = (2l )!/(l!)2 many ways
to choose when the l steps up will be taken.

Therefore, Eqs. (19) and (20) imply

Km = �(1 + m/(2l ))

rm
(l!/2)m/l .

Using Stirling’s formula [31] yields the approximation

Km ∼
(

l

er

)m

as l → ∞.

We now generalize this calculation to an h-dimensional
periodic lattice for h � 1. If the number of nodes along each
of the h � 1 sides is even and given by 2l � 2, then there is
a unique farthest node i1 ∈ I from the starting position i0 ∈ I ,
and the minimum distance from i0 to i1 is

d = dmin(i0, i1) = hl

jumps. Hence, if the target UT contains i1, then Eq. (18)
becomes

Km = �(1 + m/(hl ))

rm

[
(hl )!

|S (i0, i1)|
]m/(hl )

, (21)

and Eq. (20) generalizes to the following multinomial
formula:

|S (i0, i1)| = 2h

(
hl

l, l, . . . , l

)
= 2h (hl )!

(l!)h
. (22)

Hence, Eqs. (21) and (22) imply

Km = �(1 + m/(hl ))

rm
(l!/2)m/l .

Using Stirling’s formula [31] yields the approximation

Km ∼
(

l

er

)m

as l → ∞.

IV. NUMERICAL SIMULATIONS

In this section, we compare the results of our analysis to
numerical simulations on two types of networks: a square
lattice with periodic boundaries and a randomly constructed
network.
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FIG. 2. Comparison of stochastic simulations (dashed curve) on the lattice network [inset in panel (c)] and the moment formula (solid
curve) in Theorem 1 for the m = 1 moment [panel (a)], m = 2 moment [panel (b)], and m = 3 moment [panel (c)]. The circle markers at
N = 100, · · · , 106 are scatter plots of individual stochastic realizations of the cover time σN . In the inset in panel (c), the blue node is the
searcher starting location, the red nodes are the target, and the big red node is the farthest node from the starting location.

A. Periodic lattice in two dimensions

We now present results from stochastic simulations of a
simple random walk on a two-dimensional square lattice as in
Sec. III with 2l = 10 nodes on each side (i.e., |I| = (2l )2 =
100 total vertices).

To simulate N � 1 searchers (i.e., N iid realizations of
X ), we use the Gillespie algorithm on the Markov chain
(X1(t ), . . . , XN (t ))t�0 on the state space IN [32]. Specifically,
let r(i, j) be the “reaction rate” from i to state j with i 	= j
(because there is no “jump” to the same vertex). Since the
jump rate of a single searcher is q(i, j), the reaction rate is
proportional to the number of searchers at state i:

r(i, j) = q(i, j)ci,

where ci is the number of searchers at state i. To numerically
compute the moments of the cover time σN , we use the Monte
Carlo method with M � 1 realizations of the cover time of N
searchers. We choose M = 103 when N � 104 and M = 102

when N > 104 because the variance of σN decreases in N .
We plot the results of these stochastic simulations in Fig. 2.

This figure shows that the first, second, and third moments
of the cover time σN approach the theoretical prediction of
Theorem 1 for large N . The inset in panel (c) of Fig. 2 shows
the lattice network, where all searchers start from the large
blue node, the red nodes denote the target set UT, and the large
red node denotes the farthest part of the target [i.e., U far

T in
Eq. (17)].

In Fig. 3, we plot the results of stochastic simulations on
this same network but with the following nested target sets:

UT,k = {
i ∈ I : dmin

(
i,U far

T

)
� k

}
, k ∈ {1, 2, 4, 8}, (23)

where

U far
T = UT,0, UT,k ⊆ UT,k+1.

That is, the the different curves in Fig. 3 show the different
numerically computed cover times σN for when the target set
is either UT,8, UT,4, UT,2, or UT,1. Importantly, these four target
sets share the same set U far

T in Eq. (17). Therefore, Theorem 1
implies that the cover times for these different target sets
become identical for large N , which is indeed shown in Fig. 3.

B. Random network

We now perform stochastic simulations on a randomly
constructed network. To create the continuous-time Markov
chain for a single searcher, we first create a graph by ran-
domly connecting |I| � 1 vertices by E undirected edges (we
take |I| = 60 and E = 180). We then assign jump rates to
each undirected edge independently according to a uniform
distribution. More precisely, if Q = {q(i, j)}i, j∈I denotes the

FIG. 3. The cover time is determined by the farthest target nodes.
Panel (a) illustrates the starting point of the searchers (blue) and the
nested target sets UT,k in Eq. (23) for k = 1 (red), k = 2 (purple),
k = 4 (green), and k = 8 (yellow). Note that U far

T ⊂ UT,1 ⊂ UT,2 ⊂
UT,4 ⊂ UT,8. Panel (b) compares stochastic simulations and the theo-
retical result of the mean cover time for various choices of the target
set. Network parameters are the same as Fig. 4.
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FIG. 4. Comparison of stochastic simulations (dashed curve) on the network [inset in panel (c)] and the moment formula (solid curve)
in Theorem 1 for the m = 1 moment [panel (a)], m = 2 moment [panel (b)], and m = 3 moment [panel (c)]. The circle markers at N =
100, · · · , 106 are scatter plots of individual stochastic realizations of the cover time σN . In the inset in panel (c), the blue node is the searcher
starting location, the red nodes are the target, and the big red nodes are the farthest nodes from the starting location.

infinitesimal generator matrix of the Markov chain, then the
diagonal entries q(i, i) � 0 are chosen so that Q has zero row
sums, and the off-diagonal entries q(i, j) � 0 with i 	= j are

q(i, j) =
{

Ui, j if there is an edge between i and j,

0 otherwise,

where {Ui, j}i, j∈I are independent uniform random variables on
[1/2, 3/2]. We use the same Gillespie stochastic simulation
method as above to obtain the cover time moments.

We plot the results of these stochastic simulations in Fig. 4.
This figure shows that the first, second, and third moments
of the cover time σN approach the theoretical prediction of
Theorem 1 for large N . The inset in panel (c) of Fig. 4 shows
the topology of the randomly constructed network for the
simulations, where all searchers start from the large blue node,
the red nodes denote the target set UT, and the large red nodes
denote the farthest parts of the target [i.e., U far

T in (17)].
Analogous to Fig. 3, we plot in Fig. 5 the results of stochas-

tic simulations on this randomly constructed network but with
nested target sets as in Eq. (23) for k ∈ {0, 1, 2, 3}. Since these
four target sets share the same set U far

T in Eq. (17), Theorem 1
implies that the cover times for these different target sets
become identical for large N , which is indeed shown in Fig. 5.

V. DISCUSSION

In this paper, we studied the cover time σN for N � 1
random searchers on an arbitrary discrete network. We found
an explicit formula for all the moments of σN which depends
only on network properties along the shortest paths from the
searcher starting locations to the farthest parts of the target.
These results contrast qualitatively with prior results for single
searchers.

Many-searcher cover times were recently studied for the
case that the searchers move by diffusion (or subdiffusion) on
a continuous state space [10,27]. For searchers which move
by a continuous drift-diffusion process with characteristic dif-
fusivity D > 0 in an arbitrary space dimension, it was proven
in Ref. [27] that

E
[
σ m

N

] ∼
(

L2

4D ln N

)m

as N → ∞, (24)

where L > 0 is a certain geodesic distance from the searcher
starting locations to the farthest parts of the target. The result
Eq. (24) extended a prior result of Majumdar, Sabhapandit,
and Schehr [10] that was shown for Brownian motion in one
space dimension.

FIG. 5. The cover time is determined by the farthest target nodes.
Panel (a) illustrates the starting point of the searchers (blue) and the
nested target sets UT,k in Eq. (23) for k = 0 (red), k = 1 (purple),
k = 2 (green), and k = 3 (yellow). Note that U far

T = UT,0 ⊂ UT,1 ⊂
UT,2 ⊂ UT,3. Panel (b) compares stochastic simulations and the theo-
retical result of the mean cover time for various choices of the target
set. Network parameters are the same as Fig. 4.
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The result in Eq. (24) for searchers on a continuous state
space bears some resemblance to the result in the present
paper for searchers on a discrete state space. In both the
continuous and discrete scenarios, σN depends on the short-
est distance to the farthest parts of the target, which can be
understood by observing that σN is determined by extreme
searchers which take a direct path to cover the target. One
notable difference between the two scenarios is that the dis-
crete result in Theorem 1 in the present paper depends in a
rather complicated way on the number of shortest such paths,
whereas the continuous state space result in Eq. (24) does not.

We point out that though σN depends on extremely rare
events if N � 1, the analysis of σN does not fit into the frame-
work of classical extreme value theory. Extreme value theory
is a branch of probability theory and statistics that studies the
behavior of rare events [33], with classical results giving the
probability distribution of the minima (or maxima) of a large
collection of iid random variables [34]. Extreme value theory
can thus be directly applied to analyze fastest FPTs [35–39].
However, extreme value theory is not directly applicable to
cover times since a cover time of multiple random searchers
is not simply the minimum of a collection of iid random vari-

ables. In particular, realizations of σN tend to describe multi-
ple extreme searchers which separately cover different parts
of the target. We note that a very interesting related question
about the maximum of non-iid visitation times has been con-
sidered in the context of so-called starving random walks [40].

While we proved our results for searchers which are gen-
eral Markovian random walkers, our assumption that the
walkers are continuous-time Markov chains means that the
times between walker jumps are necessarily exponentially
distributed. One possible avenue for future work would be to
relax this assumption of exponential times. In light of prior
results on extreme FPTs for random walkers with nonexpo-
nential jump times (see Theorems 3 and 4 in Ref. [30]), we
expect similar results to that found in Theorem 1, with the
differences being determined by the short-time behavior of the
jump time distribution.
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