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Many types of cells require the ability to pinpoint the location of an external stimulus from the arrival
of diffusing signaling molecules at cell-surface receptors. How does the organization (number and spatial
configuration) of these receptors shape the limit of a cell’s ability to infer the source location? In the
idealized scenario of a spherical cell, we apply asymptotic analysis to compute splitting probabilities
between individual receptors and formulate an information-theoretic framework to quantify the role of
receptor organization. Clustered configurations of receptors provide an advantage in detecting sources
aligned with the clusters, suggesting a possible multiscale mechanism for single-cell source inference.
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The ability to pinpoint the location of an external
stimulus is critical for a variety of cell types. Canonical
examples include eukaryotic gradient-directed cell migra-
tion (chemotaxis) [1], directional growth (chemotropism)
in growing neurons [2] and yeast [3]. A unifying feature of
these systems is that they must infer the spatial location of
the external source through the noisy arrivals of diffusing
particles to membrane receptors.
The spatial organization of receptors varies between these

examples. GABA receptors in nerve cone growth begin
relatively uniform on the membrane and dynamically reor-
ganize by clustering receptors toward the source [4]. In
budding yeast (S. cerevisiae), receptors are known to dynami-
cally cluster towards the direction of a received signal in mate
identification [3,5]. In contrast, the receptors inDictyostelium
remain uniform throughout the process of identifying a source
location. These differences raise the question: what role does
receptor clustering play in locating external stimuli?
There has been considerable progress in answering this

question. Clustered receptors can provide robustness against
noise through rebinding cooperativity [6–10], or by reducing
correlation fromdownstreamsignals [11].Theseobservations
fit into the broader pursuit of understanding how complex
downstream machinery, activated by noisy receptor input,
robustly filters shallow gradients [12–20]. Here we study the
limits of the most upstream stage: the diffusive arrival of
signaling molecules to a fixed configuration of membrane
receptors. We find that receptor configuration alone contrib-
utes significantly to the quality of signal acquired by the cell.
In this Letter, we establish how receptor organization

(number and spatial distribution) shapes the limits of a cell’s
ability to detect the source location of diffusing particles.
Our approach draws from the conceptual model of Berg and
Purcell [21] (and later [22]) consisting of a spherical cell

with circular absorbing surface sites representingmembrane
receptors. We employ a matched asymptotic approach to
compute the probability a signaling molecule hits a par-
ticular receptor [23,24]. Within an information-theoretic
framework [25,26], we establish the informational limit of
the fully absorbing cell and assess efficiency relative to
this limit as a function of the surface fraction and number
of receptors. We identify fundamental differences in the
information content of clustered receptor configurations,
suggesting higher information content in front of clustered
receptors. This observation is verified by performing a
maximum likelihood inference, showing that a source can
be located with smaller average error in front of a cluster of
receptors. This suggests a multiscale mechanism for source
localization: if a cell can align toward an initial spatial cue
(e.g., as observed in budding yeast [3])with accuracy limited
by the spacing between clusters, then it can exploit receptor
nonuniformity to pinpoint the location with an accuracy
limited by receptor spacing within a cluster.

FIG. 1. Model. Diffusing particles are released from a source
location x and either escape to spatial infinity or hit a perfectly
absorbing cell-surface receptor.
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Model.—Let Ω be the unit sphere with N circular surface
receptors of common radius ε. For a diffusing particle
originating at x, the splitting probability pnðxÞ gives the
likelihood of its arrival at the nth receptor, without reaching
other receptors or escaping to spatial infinity. The splitting
probabilities encode the cell’s interaction with the extrac-
ellular environment. The probabilities fpnðxÞgNn¼1 satisfy
the mixed boundary value problem

Δpn ¼ 0; x ∈ R3nΩ;
pn ¼ 1; on nth receptor;

pn ¼ 0; on all other receptors;

∂νpn ¼ 0; elsewhere on cell surface; ð1Þ

where ∂ν ≡ n̂ · ∇ is the normal derivative. The receptor
locations are fixed on the surface (cf. Fig. 1) with a general
nonoverlapping configuration and centers Y¼fy1;…;yNg.
Dynamic rearrangement of receptors [3,4] is not explicitly
captured in this modeling paradigm, however, how such
reorganizations may affect source detection can be inferred
by comparing different static configurations. We have
derived and validated numerically [27] that as ε → 0,

pnðx;YÞ ∼4εGðx; ynÞ þ
4ε2
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Here Gðx; ξÞ is the surface Green’s function of the
Laplacian, exterior to the unit sphere. For jξj ¼ 1, it is [34]
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We distinguish between the unconditioned probabilities
pnðxÞ and the conditioned probabilities

qnðx;YÞ ¼
pnðx;YÞPN
k¼1 pkðx;YÞ

: ð3Þ

The former incorporates the possibility for escape to
infinity while the latter only reflects particles which have
reached a receptor. By working with the conditioned
probabilities, we adopt the biological assumption that the
cell has no knowledge about particles that did not arrive at a
receptor. The conditional probabilities do not vanish as
the receptor radius tends to zero (ε → 0) and qnðx;YÞ →
Gðx; ynÞ=

PN
k¼1Gðx; ykÞ.

Consider a fixed, unknown source location x from which
particles are released and denote by cn the count at the nth
receptor. When the number of receptors N and arriving
particles M ¼

PN
n¼1 cn are finite, there is uncertainty in

the acquired signal. To quantify this, we first take these
quantities to be infinitely large and then consider the case
where each is finite.
Case M ¼ ∞, N ¼ ∞.—To establish the information

content in this limit, we consider the arrival distribution
to the sphere for a point source at distance R > 1 from
the cell center. We adopt a coordinate system where the
source is located at the north pole, and let θ ∈ ½0; πÞ and
ϕ ∈ ½0; 2πÞ denote the arrival location on the sphere. The
density describing ðθ;ϕÞ is equivalent to the classical
charge distribution on a conducting sphere induced by a
point charge [35–37]

fRðθ;ϕÞ ¼ fRðθÞ ¼
1 − R−2

4πð1 − 2R−1 cos θ þ R−2Þ32
sin θ:

In the context of cellular decision making [38], we
assume that the cell has a prior distribution of each receptor
being equally likely to have an arrival of particles; i.e., the
cell is initially uninformed about the source location. For
the fully absorbing sphere, this yields

funifðθ;ϕÞ ¼ funifðθÞ ¼
1

4π
sin θ:

The directional information encoded by the arrivals of
particles to the surface is therefore a measure of the
deviation between the measured and prior distributions.
The Kullback-Leibler (KL) divergence, or relative entropy,
of q from p is defined by

dreðpkqÞ ≔
Z

pðxÞ ln
%
pðxÞ
qðxÞ

&
dx:

The relative entropy dreðpkqÞ interpreted in a Bayesian
sense computes the amount of information gained revising
the belief distribution from q to p. Consequently, the
relative entropy from the uniform distribution of arrivals
encodes the amount of directional information the cell has.
This quantity is found explicitly as a function of R:

EðRÞ ≔ dreðfRkfunifÞ ¼
Z

2π

0

Z
π

0
fR ln

%
fR
funif

&
dθdϕ

¼ lnðRÞ þ3R coth−1ðRÞ − 1

2
ln ðR2 − 1Þ −3:

We note that EðRÞ is positive and monotonically decreasing
with intuitive limiting values. As the source approaches the
absorbing sphere, limR→1þ EðRÞ ¼ ∞. That is, the noise
encoded from diffusion vanishes close to the cell and the
arrivals encode the exact direction of the source. However,
EðRÞ ∼ 3

2R
−2 as R → ∞, so that for distant sources,

diffusion induces more noise in the arrival locations and
directional information is reduced.
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Case M ¼ ∞, N < ∞.—We now consider a finite
number of receptors. From the conditioned probabilities
qnðx;YÞ in (3), we define the information gained revising
the prior belief from uniform to be the deviation

EðR;NÞ ¼
XN

n¼1

Z

jxj¼R
qnðx;YÞ ln

%
qnðx;YÞ
1=N

&
dx:

EðR;NÞ averages over the angular position of the source. In
the calculation for the fully absorbing sphere, the location
of the source was chosen arbitrarily due to rotational
symmetry. To compare directly to that quantity with
explicit receptors, we average over angular positions of
the source. Later, we explore the role of angular position
relative to receptors in an unaveraged quantity. The
probabilities qnðx;YÞ are computed with a numerical
solution to (1) for varying source locations and uniformly
spaced receptor configurations Y centered at Fibonacci
spiral points [39]. The results of computing EðR;NÞ for
varying number of receptors can be seen in Fig. 2. We first
vary the receptor radius ε and see that the resulting behavior
is intuitive: as the characteristic distance between receptors
decreases, the resolution increases and the fully absorbing
sphere serves as a limiting object for finite number of
receptors: EðR;NÞ → EðRÞ as N → ∞. Estimates of recep-
tor numbers range fromN ≈104–105 for lymphocytes [40],
N ≈102 for GABA receptors in neural cone growth [41],
and N ≈104 in budding yeast [3]. For N ¼ 1000 and
ε ¼ 0.05, the largest values in the figure, the surface
fraction coverage f ¼ ε2N=4 is approximately f ≈70%

and the information content is effectively at the limit of the
fully absorbing sphere.
Is this effect due to having more receptors or just a

byproduct of increasing the absorbing surface area? We
instead vary f (setting ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4f=N

p
) and observe that the

information content still increases as a function of N. In the
case of 1% surface fraction coverage by N ¼ 1000 recep-
tors, the directional information content is over 50% of
the fully absorbing limit [42]. This surprising result is
analogous to the Berg and Purcell flux dependence on the
absorbing surface perimeter. The probabilities qn are
influenced by arrivals to other receptors, the rate at which
is controlled by the flux, meaning again the perimeter is the
factor that influences the rate at which information is
gained. In the inset of Fig. 2, we see EðR;NÞ ∼ R−2 as
R → ∞ alongside the perfectly absorbing limit.
Clustered receptor configurations.—We have so far

examined how a finite number of uniformly distributed
receptors approaches the fully absorbing sphere limit.
Receptor clustering reduces the total flux to the receptors
[44], but it remains to determine the effect on directional
sensing. The relative entropy in this case is the nonaveraged
quantity

Eðx;YÞ ¼
XN

n¼1

qnðx;YÞ ln
%
qnðx;YÞ
1=N

&
: ð4Þ

For a given source location x and receptor configuration Y,
this measure should be interpreted as a prior distribution of
uniform probabilities across receptors, which is not nec-
essarily equivalent to any particular distribution of x, the
quantity being estimated. See [45] for a discussion of priors
in direction sensing.
Let Yclust and Yunif denote clustered and uniform

receptor configurations (Fig. 3). Clustered configurations
are formed by placing receptors in a spherical cap and
copying across the sphere at Fibonacci spiral points. For
these configurations, the relative entropy (with respect to
uniform probabilities) is computed using the asymptotic
result (2) and shown in Fig. 3. The asymptotic result allows
for rapid evaluation of these probabilities at a large number
of source locations.
In Fig. 3, the directional relative entropy appears to be

heterogeneous in space for Yclust but directionally uniform
for Yunif. The difference Eðx;YclustÞ − Eðx;YunifÞ (Fig. 3,
right column) indicates that directional entropy in front of a
cluster is higher than that of the uniform configuration, and
this difference diminishes as source distance increases. This
implies that informational content is richer for the clustered
configuration when particles are arriving from sources in
front of the cluster.
To explore further, we compute in Fig. 4 the difference in

entropy both in front of a cluster and averaged over possible
source locations [i.e., EðRex;YÞ and

R
jxj¼R Eðx;YÞdx].

The results are shown for 45 total receptors and source

FIG. 2. Directional information with finite number of receptors.
Relative entropy from uniform EðR;NÞ for uniformly spaced
receptors as a function of the number of receptors N normalized
by the entropy in the fully absorbing sphere limit, EðRÞ. In the
red, dashed: receptor radius ε ¼ f1; 2;3;4; 5g × 10−2, blue,
solid: surface fraction f ¼ f1; 2.5; 5; 7.5; 10g% with R ¼ 5
fixed. Inset: EðR;NÞ as a function of R, with N ¼ 25 receptors
fixed and the same varied surface fractions.
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distances R ¼ 2, 4. In front of a cluster, nonuniform
configurations have higher entropy levels, but on average,
perform worse. The benefits of clustering become dimin-
ished as the source location becomes farther away or the
configuration becomes less clustered. The resolution is
therefore determined by the spacing between receptors.
Thus, smaller receptor spacing within a cluster can resolve
finer detail. Expectedly, as the source location moves away,

the noise from diffusion makes both distributions converge
to uniform probabilities and the difference vanishes.
Case M < ∞, N < ∞.—For infinitely many incident

particles ðM ¼ ∞Þ, the qn are discerned exactly. How does
source inference operate given a noisy sample formed by
finite arrivals? The probabilities of arrival at each receptor
are multinomial (dependent on x) with likelihood

Lðx;YÞ ¼
XN

n¼1

cn
M

ln½qnðx;YÞ&:

The maximum likelihood estimate (MLE) of the source is

x̂MLE ¼ argmax
x

L ðx;YÞ: ð5Þ

We use this inference scheme only as a statistical abstrac-
tion to quantify the limits of uncertainty in the system.
Cellular mechanisms for MLE-based [46] or Bayesian [47]
inference have been proposed but are fundamentally down-
stream of diffusive arrivals and beyond the scope of this
Letter. Relative entropy and Fisher information (the stan-
dard error of MLE) are related [48] so we expect the
previous results about relative entropy to inform the error in

FIG. 3. Relative entropy for two receptor configurations. Left
and center columns: the directional entropy (4) as a function of the
source location for each configuration and R ¼ f1.25; 1.75; 2.5g.
Right column: the difference between the two entropies.At smaller
R values, clustered configurations can receive more directional
information. This difference diminishes at large R values sug-
gesting receptor organization plays a negligible rolewhen locating
distant sources.

FIG. 4. Comparison of entropies for clustered and uniform
receptor configurations. Difference in entropy is computed in
front of the cluster (green) and averaged over source locations
(purple). Clustered configurations have higher relative entropy in
front of clusters but lower on average, with this effect most
magnified close to the cell.

FIG. 5. Frequency of maximum likelihood estimated locations.
(a) For varying source locations x at a distance R (from the center
of the cell) and sample sizes M, frequencies of MLE estimated
locations (5) for uniform receptor covering. (b) estimated loca-
tions for the configurations of receptors shown in Fig. 3. Colors
correspond to relative frequency of estimated location.
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the MLE estimate. In Fig. 5(a), we vary the source location
x¼ðR;0;0Þ for R ¼ 2, 10, 100 andM ¼ 102; 103; 104; 105.
The receptor configuration remains the uniform configu-
ration in Fig. 3. For each trial, we compute the MLE
estimate numerically from (5) with z ¼ 0 fixed and plot
the frequency of results. The error hkx̂MLE − xki scales
∼M−1=2, as predicted by the central limit theorem but also
as ∼R−2 [27], in accordance with the relative entropy
results in theM ¼ ∞ case. To verify the claim in Fig. 3 that
certain source locations may be better detected by a
clustered configuration, we fixed the source at x ¼
ð2.5; 0; 0Þ and took M ¼ 50 particles. The frequency of
predicted locations, shown in Fig. 5(b), yields a lower mean
error for the clustered configuration than that of the
uniform.
Discussion.—We have examined the role of receptor

organization on detection of external stimuli. We demon-
strate that a cell can operate near theoretical limits with a
finite number of receptors and noisy arrival data. When
receptors are not uniformly spaced, the information content
is larger in front of clusters suggesting that resolution is
limited by receptor spacing. A cell with clustered receptors
can potentially benefit by forming a crude estimate and
aligning itself in that direction.
Altogether, our results reinforce the notion that cells

must balance trade-offs between directional signal cover-
age and robustness as seen in other work [8–11]. However,
we emphasize that the only mechanism by which receptors
are interacting in our model is through binding competition,
as no downstream signaling or rebinding are included.
Understanding the interplay between receptor organization
and downstream signaling mechanisms is a natural direc-
tion for future investigations. Finally, it would be interest-
ing to study the relative entropy of physiological or
dynamical cluster configurations (e.g., [8]) compared to
the synthetic ones utilized here. Our Letter suggests the
spatial organization of membrane bound receptors plays
a crucial role in cellular scale directional sensing and
decision making.
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MATCHED ASYMPTOTIC ANALYSIS FOR THE SPLITTING PROBABILITIES

In this section, we use a matched asymptotic approach to derive an asymptotic expansion

for the splitting probabilities. To simplify notation, we solve for p(x) where it is assumed

that the distinguished receptor is j = 1. The problem to be solved is then

�p = 0, x 2 R3
\⌦; @⌫p = 0, x 2 @⌦\{[N

j=1@⌦j}; (S1a)

p = �1j, x 2 @⌦j, j = 1, . . . , N ; p ! 0, as |x| ! 1. (S1b)

To establish the correct expansion of (S1) as " ! 0, the first step is to analyze the solution

in the O(") neighborhood near each receptor, hereafter referred to as the “inner” region.

The region away from the receptors, in which |x� xk| = O(1) for k = 1, . . . , N , is referred

to as the “outer” region. A key part of the analysis is knowledge of G(x;x0), the surface

Green’s function exterior to the unit sphere that satisfies the system

�G = 0, r = |x| > 1, ✓ 2 (0, ⇡), � 2 (0, 2⇡); (S2a)

�@rG|r=1 =
1

sin ✓0
�('� '0)�(✓ � ✓0), ✓ 2 (0, ⇡), � 2 (0, 2⇡); (S2b)

G ⇠
1

2⇡|x|
as |x| ! 1; (S2c)
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where x0 = (sin ✓0 cos'0, sin ✓0 sin'0, cos ✓0)T . The solution of (S2) for |x0| = 1 is given

explicitly (cf. [S1]) by

G(x;x0) =
1

2⇡

h
1

|x� x0|
�

1

2
log

⇣
1� x · x0 + |x� x0|

|x|� x · x0

⌘i
. (S3)

We first develop the solution to (S1) in a boundary layer in the vicinity of the receptor

centered at xk. The first step is to introduce the local coordinate system

z =
x� xk

"
, ⌘ =

r � 1

"
, s1 = sin ✓k

'� 'k

"
, s2 =

✓ � ✓k
"

, (S4)

where r = |x| and ⌘ is a rescaled measure of distance to ⌦. Here s = (s1, s2) 2 R2

represents, for ⌘ = 0, an approximate surface cartesian coordinate system near the kth

receptor. Defining the operators

L := @⌘⌘ + @s1s1 + @s2s2 ,

A := �2⌘(@s1s1 + @s2s2) + cot ✓k(@s2 � 2s2@s1s1) + 2@⌘,

equation (S1a) is transformed to

1

r2
@

@r

✓
r2
@p

@r

◆
+

1

r2 sin ✓

@

@✓

✓
sin ✓

@p

@✓

◆
+

1

r2 sin2 ✓

@2p

@�2

⇠ "�2
Lp+ "�1

Ap+O(1) = 0. (S5)

The key ingredient required to establish the correct asymptotic expansion of (S1) as " ! 0,

is the local behavior of the Green’s function G(x;xk) (S3) as x ! xk. In terms of the

rescaled local coordinates (S4), this behavior is given by

G =
1

2⇡


1

"|z|
+

1

2
log("/2) +

1

2
log[⌘ + |z|] +O(")

�
. (S6)

The next step is to use the following two-term expansion (cf. Lemma A.1 of [S2]) for 1/|z|

in terms of the local coordinates (s1, s2, ⇢), where |s| := (s21 + s22)
1
2 and ⇢ := (⌘2 + |s|2)

1
2 ,

1

|z|
=

1

⇢
�

"

2⇢3
⇥
⌘|s|2 + s21s2 cot ✓k

⇤
+O("2).

Substituting this into (S6) yields the local behavior of G(x;xk) as x ! xk is

G =
1

2⇡


1

"⇢
+

1

2
log("/2) +

1

2

⇣
log[⌘ + ⇢]�

1

⇢3
�
⌘|s|2 + s21s2 cot ✓k

�⌘�
+O("). (S7)
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In view of (S7), and the fact that pk = O(1) on ⌘ = 0, we expand the inner solution near

the kth receptor, in terms of the inner variables (⇢, s1, s2), as

p ⇠ wk
0 + " log("/2)wk

1 + "wk
2 + · · · , as " ! 0. (S8)

Plugging (S8) into (S1) and using (S5), we have for n = 0, 1, 2, and k = 1, . . . , N ,

Lwk
n = ��1k�2nAw1

0, ⌘ > 0, s 2 R2
; (S9a)

wk
n = �1k�0n, ⌘ = 0, |s| < ak; @⌘w

k
n = 0, ⌘ = 0, |s| � ak. (S9b)

The problems (S9) can be solved exactly for n = 0, 1, 2 and k = 1, . . . , N . To obtain these

solutions, we introduce (denoted by wc) the planar electrified disk problem defined on the

tangent plane to the sphere at x = xk,

Lwc = 0, ⌘ > 0, s 2 R2
; wc ! 0 as ⇢ ! 1, (S10a)

wc = 1, ⌘ = 0, |s| < ak; @⌘wc = 0, ⌘ = 0, |s| � ak, (S10b)

The exact solution (see [S2, S3]) to (S10) is

wc =
2

⇡
sin

�1
(ak/L), L :=

1

2

hp
(|s|+ ak)2 + ⌘2 +

p
(|s|� ak)2 + ⌘2

i
. (S11a)

In terms of the capacitance ck of the kth receptor, the far-field behavior is

wc ⇠ ck
⇣
1

⇢
+

⇡2c2k
24

⇣
1

⇢3
�

3⌘2

⇢5

⌘
+ · · ·

⌘
as ⇢ ! 1; ck :=

2ak
⇡

. (S11b)

The solution of problems (S9) may all be represented in terms of wc. For example, we have

that

wk
0 = �1kwc. (S12)

In light of the fact that wk
0 = 0 for k 6= 1, we additionally have that

wk
1 = Ak(1� wc), k = 1, . . . , N ;

wk
2 = Bk(1� wc), k = 2, . . . , N,

for constants {A1, . . . , AN} and {B2, . . . , BN} to be found from matching with the outer

expansion. To determine the problem for the last equation w1
2, we note that equations
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(S12), (S9), together with Lwc = 0 in (S10) imply

Lw1
2 = �2(@⌘wc + ⌘@⌘⌘wc)� cot ✓1(@s2wc � 2s2@s1s1wc), ⌘ > 0, s 2 R2

; (S13a)

w1
2 = 0, ⌘ = 0, |s| < a1; @⌘w

1
2 = 0, ⌘ = 0, |s| � a1. (S13b)

The process of matching solutions of (S13) to the outer expansion requires that we determine

all monopoles in the far-field. For this reasons we identify such terms in (S13) by first

decomposing

w1
2 = B1(1� wc)� w2o � w2e, (S14)

where w2o satisfies

Lw2o = cot ✓1(@s2wc � 2s2@s1s1wc), ⌘ > 0, s 2 R2
; (S15a)

w2o = 0, ⌘ = 0, |s| < a1; @⌘w2o = 0, ⌘ = 0, |s| � a1; (S15b)

w2o ⇠
c1
2⇢3

(s21s2 cot ✓1), as ⇢ ! 1, (S15c)

and w2e satisfies

Lw2e = 2(@⌘wc + ⌘@⌘⌘wc), ⌘ > 0, s 2 R2
; (S16a)

w2e = 0, ⌘ = 0, |s| < a1; @⌘w2e = 0, ⌘ = 0, |s| � a1; (S16b)

w2e ⇠ �
c1
2
log[⌘ + ⇢] +

c1
2⇢3

⌘|s|2, as ⇢ ! 1. (S16c)

Clearly w1
2 in (S14) has a monopole arising from the wc term. To determine whether other

monopole terms arise from equations (S15) and (S16), we use the exact solution (see [S2,

Lemma B.2]) of (S15)

w2o = cot ✓1

✓
s21
2
@s2wc � s2s1@s1wc

◆
. (S17)

Using the solution (S17) and evaluating the limit ⇢ ! 1, it can be shown that w2o does

not give rise to a monopole in the far field. However, w2e does exhibit a monopole in its far

field. Specifically, it was shown in [S2, Lemma B.1] that

w2e ⇠ �
c1
2
log[⌘ + ⇢] +

c1
2⇢3

⌘|s|2 +
c1b1
⇢

, as ⇢ ! 1, b1 :=
c1
2

h
log(4a1)�

3

2

i
. (S18)

Combining equations (S14) and (S18), we obtain the needed far behavior

w1
2 ⇠ B1

✓
1�

c1
⇢

◆
�

c1b1
⇢

+
c1
2
log[⌘ + ⇢] +O(⇢�3

), ⇢ ! 1. (S19)
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Matching and solving outer problems

In this section, we develop the solution in the outer region away for the receptors and this

solution to the inner through a matching process. In light of the local solution expansion

(S8), the correct expansion of the outer solution to (S1) is

p(x) = "p0 + "2 log("/2)p1 + "2p2 + · · · , (S20)

where each pj satisfies

�pj = 0, |x| > 1, @rpj = 0, x 2 @⌦\{x1, . . . ,xN}, (S21)

subject to certain asymptotic behaviors as x ! xk for k = 1, . . . , N that are to be determined

by matching. For each of these problems, we show below that the solution will either be a

zero constant (since pj ! 0 as |x| ! 1) or a superposition of Green’s functions, where each

receptor e↵ectively introduces a Coulomb source of a certain strength.

The matching condition is that as x ! xk and ⇢ ! 1.

"p0 + "2 log("/2)p1 + "2p2 + · · · ⇠ wk
0 + " log("/2)wk

1 + "wk
2 + · · · . (S22)

Plugging (S12) into (S22) and using (S11b) and the leading order behavior,

⇢ ⇠ "�1
|x� xk|,

we determine the leading order matching condition

"p0 ⇠ �1k
"ck

|x� xk|
. (S23)

Hence, we have that p0 solves the problem

�p0 = 0, |x| > 1; @rp0 = 0, x 2 @⌦\{x1, . . . ,xN}; (S24a)

p0 ⇠
c1

|x� x1|
, as x ! x1; p0 ! 0, as |x| ! 1. (S24b)

A comparison of (S2) and (S3) reveals that the solution of (S24) can be expressed as

p0(x) = 2⇡c1G(x;x1). (S25)
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We now seek the higher order corrections to (S25) by matching higher order terms to the

expansion (S22). Now, if k 6= 1, the matching condition as x ! xk becomes

"p0(xk) + "2 log("/2)p1 + "2p2 + · · · (S26)

⇠ " log("/2)Ak

⇣
1�

"ck
|x� xk|

⌘
+ "Bk

⇣
1�

"ck
|x� xk|

⌘
+ · · · ,

⇠ " log("/2)Ak + "Bk � "2 log("/2)Ak
ck

|x� xk|
� "2Bk

ck
|x� xk|

+ · · · .

This suggests that we need to modify the outer expansion by adding a constant logarithmic

switchback term " log("/2)�. However, since p must vanish as |x| ! 1, any constant

solution must be trivial so that � = 0 and thus Ak = 0 for k = 2, . . . , N . Hence, the

matching condition (S26) reduces to

"p0(xk) + "2 log("/2)p1 + "2p2 + · · · ⇠ "Bk � "2Bk
ck

|x� xk|
+ · · · . (S27)

From (S27), it follows that

Bk = p0(xk) = 2⇡c1G(x1;xk), p2 ⇠ �
Bkck

|x� xk|
, as x ! xk, k 6= 1. (S28)

The term p1 will match to terms of O("2 log("/2)) in the higher order corrections of (S8).

We now examine the local behavior near the distinguished receptor as x ! x1. From the

local behavior of the Green’s function (S7), we have that as x ! x1,

"p0 ⇠ c1
h
1

⇢
+

"

2
log("/2) +

"

2

⇣
log[⌘ + ⇢]�

1

⇢3
�
⌘|s|2 + s21s2 cot ✓k

�⌘i
+O("2). (S29)

The matching condition (S22) as x ! x1, ⇢ ! 1, using (S29), (S14), and (S18), is then

c1
h
1

⇢
+

"

2
log("/2) +

"

2

⇣
log[⌘ + ⇢]�

1

⇢3
�
⌘|s|2 + s21s2 cot ✓k

�⌘i
+ "2 log("/2)p1 + "2p2

⇠
c1
⇢
+ " log("/2)A1

�
1�

c1
⇢

�

+ "
h
B1

�
1�

c1
⇢

�
�

c1
2⇢3

(s21s2 cot ✓1) +
c1
2
log[⌘ + ⇢]�

c1
2⇢3

⌘|s|2 �
c1b1
⇢

i
+ · · · ,

Canceling out the terms that match automatically, this condition reduces to

c1
"

2
log("/2) + "2 log("/2)p1 + "2p2 + · · ·

⇠ " log("/2)A1

⇣
1�

c1
⇢

⌘
+ "

h
B1

⇣
1�

c1
⇢

⌘
�

c1b1
⇢

i
+ · · · , as x ! x1, ⇢ ! 1.
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To establish the local behavior of p1 and p2, we return to the outer variable using ⇢ ⇠

"�1
|x� x1| to obtain as x ! x1,

c1
"

2
log("/2) + "2 log("/2)p1 + "2p2 + · · ·

⇠ " log("/2)A1 � c1"
2
log("/2)A1

1

|x� x1|
+ "B1 �

"2c1
|x� x1|

(B1 + c1) + · · · .

This matching condition yields that

A1 = c1/2, B1 = 0.

It then follows that p1 and p2 have the local behaviors

p1 ⇠
�c21/2

|x� x1|
, as x ! x1, p2 ⇠

�c1b1
|x� x1|

, as x ! x1.

The full specification of problem p1 is now

�p1 = 0, |x| > 1; @rp1 = 0, x 2 @⌦\{x1, . . . ,xN}; (S30a)

p1 ⇠ �
1

2

c21
|x� x1|

, as x ! x1; p1 ! 0, as |x| ! 1. (S30b)

while the problem for p2 is

�p2 = 0, |x| > 1; @rp2 = 0, x 2 @⌦\{x1, . . . ,xN}; (S31a)

p2 ⇠ �
c1b1

|x� x1|
, as x ! x1; p2 ⇠ �

c1Bk

|x� xk|
, as x ! xk, k 6= 1; (S31b)

p2 ! 0, as |x| ! 1. (S31c)

The solutions of these problem are represented in terms of G(x;x0) as

p1(x) = �⇡c21G(x;x1), (S32a)

p2(x) = �2⇡b1c1G(x;x1)� 4⇡2
NX

k=2

c1ckG(xk;x1)G(x;xk), (S32b)

where the value of b1 is defined in (S18). By combining (S25) and (S32) into expansion

(S20), we have the final expression for the splitting probability in the limit as " ! 0,

p ⇠ "2⇡c1G(x;x1)� "2 log("/2)⇡c21G(x;x1)

� 2⇡"2c1

"
b1G(x;x1) + 2⇡

NX

k=2

ckG(xk;x1)G(x;xk)

#
+ · · · . (S33)
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The result (S33) is valid when the k = 1 receptor is distinguished. Transferring the dis-

tinguished receptor to the jth, we recover the main result, namely the splitting probability

pj(x) has the limiting behavior

pj(x) ⇠ "2⇡cjG(x;xj)� "2 log("/2)⇡c2jG(x;xj)

� 2⇡"2cj

2

64bjG(x;xj) + 2⇡
NX

k=1
k 6=j

ckG(xk;xj)G(x;xk)

3

75+ · · · . (S34)

as " ! 0.

As one validation of this new result, we compare with the asymptotic result for the

capacitance problem, derived in [S2]. We consider P (x), the probability that the di↵using

particle reaches any receptor, i.e.

P (x) = Px(absorbed at cell starting from x). (S35)

From linearity, we have that P (x) =
PN

j=1 pj(x) and so we have that

P (x) = 1 + C0v(x). (S36)

where v(x) is that “escape from capture problem” satisfying

�v = 0, x 2 R3
\⌦; v ⇠

1

|x|
�

1

C0
, as |x| ! 1; (S37a)

@⌫v = 0, x 2 @⌦\{[N
k=1@⌦j}; v = 0, x 2 @⌦j, k = 1, . . . , N. (S37b)

The capacitance C0 was determined in [S2] to have expansion as " ! 0,

1

C0
⇠

⇡

N"

h
1 +

"

⇡

⇣
log(2")�

3

2
+

4

N

NX

j=1

NX

k=j+1

1

|xj � xk|
+

1

2
log


|xj � xk|

2 + |xj � xk|

�⌘i

As a check on Principal Result 1, we use P (x) =
PN

j=1 pj(x) and result (S21) for pj(x), to

find that

P (x) =
NX

j=1

pj(x) ⇠ "2⇡
NX

j=1

cjG(x;xj)� "2 log("/2)⇡
NX

j=1

c2jG(x;xj)

� "2
NX

j=1

h
2⇡bjcjG(x;xj) + 4⇡2

NX

k=1
k 6=j

cjckG(xj;xk)G(x;xk)

i
+ · · · .

(S38)

After algebra and simplification, we find that that (S36) is exactly satisfied.
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NUMERICAL VALIDATION OF ASYMPTOTIC SPLITTING PROBABILITIES

In this section, we validate the asymptotic formulas for the splitting probabilities (S34) by

comparing to numerical results obtained from a spectral boundary integral method solution

of the exterior mixed Neumann-Dirichlet boundary value problem (S1). The computational

method is a linear integral equation relating the surface potential, f(x) = p|@⌦, to the surface

flux, q(x) = @⌫p|@⌦ = �@rp|@⌦. An application of Lagrange’s identity to p(x) and G(x;y),

the Green’s function satisfying (S2), yields the integral equation

p(x) =

Z

y2⌦
G(y;x)q(y) dS, x 2 R3

\ ⌦. (S39)

The surface flux, q(x), is non-zero only on the receptors, �a. When restricting to the surface

of the sphere with specified Dirichlet data u(x)|@⌦ = f(x), the following linear integral

equation is found

f(x) = A [q(y)] ⌘
1

2⇡

Z

y2�a

g (|y� x|) q(y) dS, x 2 ⌦ , (S40a)

where the kernel of the integral operator is defined by the Green’s function (S3) restricted

to the sphere

G(x;y) =
1

2⇡
g (|x� y|) , for x,y 2 ⌦; g(d) ⌘

1

d
+

1

2
log

✓
d

2 + d

◆
. (S40b)

The key challenge in the accurate numerical solution of (S40) is the divergence of the surface

flux q(x) along @�a - a notorious feature of mixed Neumann-Dirichlet boundary value prob-

lems [S4, S5]. This issue can be resolved by a careful choice of basis functions for the surface

potential, f(y), and the surface flux, q(y) in terms of the Zernike polynomials [S6] which are

a complete basis for square integrable function supported on circular geometries. By mim-

icking the known inverse square root singularity structure of the flux, as observed from the

solution of the electrified disk problem (S11), equation (S40) can be solved pseudo-spectrally

to high accuracy.

This approach, together with full implementation details, has been validated for a wide

variety of surface receptor configurations and is e↵ective for the case of thousands [S7]

and even hundreds of thousands [S8] of receptors. When the order of the method is fixed,

accuracy is reduced when receptors boundaries are nearly touching. The accuracy of the

numerical solution can be improved in such cases by taking additional Zernike modes in
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the expansion of the solution. In the following test cases, we focus on using this tool to

numerically validate the asymptotic formula (S34) for the splitting probabilities. In Fig. S1

we plot the 3D numerical solution of (S1) in a test problem featuring 5 receptors.

(a)Configuration. (b)Solution heat map. (c)Solution contours.

FIG. S1. Numerical solution of (S1) in a 5 receptor case with a single distinguished (purple)

receptor. The positions of the receptors are given by (S43) and each have common radius " = 0.4.

We remark that the solution drops to zero quite rapidly away from the sphere.

In the following, we validate the accuracy of the asymptotic formula in three scenarios: a

simple three receptor configuration, a clustered configuration, and a homogeneous covering.

The accuracy is quantified by considering the relative error

Erel =

����
pnum � pasy

pnum

���� . (S41)

In each of the examples, we find that the asymptotic expansion has the expected con-

vergence rate as " ! 0 and accurately predicts the splitting probabilities, provided the

receptors are well separated.

Three receptor test case

This example benchmarks the asymptotic formula for a simple configuration with three

receptors located at

xk = (sin ✓k cos'k, sin ✓k sin'k, cos ✓k), k = 1, 2, 3; (S42a)

(✓1,'1) =

⇣⇡
2
,
3⇡

2

⌘
, (✓2,'2) =

⇣⇡
4
,
⇡

2

⌘
(✓3,'3) =

⇣
2⇡

3
,
⇡

3

⌘
. (S42b)

For the fixed point x = (1,�1, 1), we demonstrate in Fig. S2 the accuracy of the asymptotic

splitting probabilities in the limit as the common receptor radius " ! 0. In this simple con-

11



figuration, the splitting probabilities associated with each receptor are remarkable accurate,

even at large receptor radii.
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(a)Asymptotic splitting

probabilities.
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(b)Relative error versus receptor

radius.

(c)Three receptor

configuration for " = 0.4.

FIG. S2. Comparison of asymptotic and numerical splitting probabilities for the three receptor

configuration described in (S42). All curves shown for splitting probabilities evaluated at location

x = (1,�1, 1).

Homogeneous covering case

To generate homogeneous coverings of the sphere, we use a simple and e↵ective set known

as the Fibonacci spiral points [S9, S10]. Given an integer M , the position of the N = 2M+1

spiral points are given by

xk = (sin ✓k cos'k, sin ✓k sin'k, cos ✓k); (S43a)

sin ✓k =
2k

N
, 'k =

2⇡k

�
, k = 1, . . . , N, (S43b)

and � = 1 + �
�1

= (1 +
p
5)/2 ⇡ 1.618 is the golden ratio. We calculate the splitting

probabilities for a configuration of N = 43 points given by (S43) and display the results in

Fig. S3 for three distinguished receptors.

The asymptotic approximation is accurate, provided the individual receptor radius is

small and the resulting configuration is well separated.
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FIG. S3. Validation of the asymptotic splitting probabilities for a homogeneous covering of N = 43

receptors from the Fibonacci spiral points (S43). The asymptotic is accurate provided the receptor

radius is small enough to keep the configuration well-separated. All splitting probabilities evaluated

at the point x = (1, 1, 1).

Clustered Test Case

In this example, we benchmark the asymptotic splitting probabilities on an example with

a total of N = 42 surface receptors partitioned into 6 clusters of 7 receptors each.
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(a)Asymptotic splitting
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(b)Relative error versus receptor
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(c)Clustered receptor

configuration for " = 0.04.

FIG. S4. Validation of the asymptotic splitting probabilities for a configuration of N = 42 receptors

into 6 clusters of 7 each. The asymptotic description is accurate, provided the receptor radius is

small enough to keep the configuration well-separated. All splitting probabilities evaluated at the

point x = (1, 1, 1).
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MAXIMUM LIKELIHOOD ESTIMATE ERROR SCALING

In Fig. 5 in the main text, we show spatial histograms of the maximum likelihood

estimated position x̂MLE as a function of the source distance kxk = R and number of particles

arriving to receptors M . In the following figures, we plot the average error hkx̂MLE � xki as

a function of M,R.

0 50 100 150 200
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100
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−100

−50
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50

100a b

FIG. S5. Continuation of Fig. 5 in main text for R = 100 and M = 10
6, 107. MLE estimate

approaches the true answer as the sample size M increases even for far away sources.

In more detail: in each of the following parameter scenarios, we ran 50, 000 trials. In

each trial, we draw counts cn for n = 1, . . . , N from a multinomial distribution with M

particles so
P

n cn = M with the nth receptor having probability qn(x). The likelihood

function L(x) (see main text) was computed with z = 0 fixed and the maximizer xMLE was

found numerically. For each of these trials, a single error is computed, kx̂MLE � xk and the

averaged quantities hkx̂MLE � xki are therefore averaged over these trials, corresponding to

the bias of the estimate.

As claimed in the main text, and seen Fig S6, the average error scales ⇠ M�1/2
and

⇠ R2
asymptotically. The scaling on M is expected from the central limit theorem and

asymptotic normality of the MLE estimator. The scaling on R persists from the infinite

data scenarios described in the main text. Since these are asymptotic scalings, deviations

occur if M is small.

14



a b

log 

log M log R

R=100
R=50

R=20
R=10

R=2

M=102

M=103

M=104

M=105

M=106

M=107

~M-1/2 ~R 2

-0.5 0 0.5 1 1.5 2 2.51 2 3 4 5 6 7 8
-4

-3

-2

-1

0

1

2

3

-4

-3

-2

-1

0

1

2

3

FIG. S6. Mean error scaling as a function of the number of arriving particles M and source distance

R. Numerical values corresponding to demonstrations in Fig. 5 in the main text.

MEAN ERROR UNIFORM AND CLUSTERED CONFIGURATIONS AND VAR-

IED M,R

In Fig. 6 in the main text, a scenario is depicted demonstrating that clustered config-

urations can provide smaller average errors hkx̂MLE � xki. However, this behavior is not

general. In the following figures, we report other scenarios where the error is approximately

the same or worse for the clustered configuration. Denote eu the mean error for the uniform

configuration and ec mean the error for the clustered configuration. Sweeping over the source

distance R and number of arriving particles M for close sources, we find the following mean

errors.

eu R = 1.25 R = 1.5 R = 2 R = 2.5 R = 3

M = 50 0.179 0.330 0.721 1.226 1.779

M = 100 0.128 0.221 0.478 0.813 1.254

M = 250 0.080 0.137 0.293 0.494 0.738

M = 500 0.056 0.096 0.206 0.343 0.512

M = 1000 0.040 0.067 0.145 0.241 0.358

TABLE S1. Mean error in the MLE estimated locations for the clustered receptor configuration

yunif in the main text.

From these values, we see that clustered configurations can provide lower mean error when
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ec R = 1.25 R = 1.5 R = 2 R = 2.5 R = 3

M = 50 0.131 0.264 0.625 1.075 1.621

M = 100 0.092 0.186 0.449 0.760 1.143

M = 250 0.059 0.118 0.287 0.491 0.727

M = 500 0.042 0.084 0.205 0.349 0.516

M = 1000 0.030 0.060 0.145 0.247 0.367

TABLE S2. Mean error in the MLE estimated locations for the clustered receptor configuration

yclust in the main text.

eu � ec R = 1.25 R = 1.5 R = 2 R = 2.5 R = 3

M = 50 0.049 0.065 0.095 0.151 0.157

M = 100 0.036 0.035 0.029 0.053 0.112

M = 250 0.021 0.018 0.006 0.003 0.011

M = 500 0.014 0.011 0.002 -0.006 -0.004

M = 1000 0.010 0.008 -0.001 -0.006 -0.009

TABLE S3. Di↵erence in the mean error in the MLE estimates for the uniform and clustered con-

figuration. Positive values indicate that the error in the uniform configuration is larger, indicating

worse performance for uniform.

M,R are small. As M and R become su�ciently large that the benefits of the clustered

configurations become diminished. This frontier is highlighted in Tables S3 and S4.
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