
PHYSICAL REVIEW E 102, 042125 (2020)

Subdiffusion-limited fractional reaction-subdiffusion equations with affine reactions:
Solution, stochastic paths, and applications

Sean D. Lawley *

Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA

(Received 21 August 2020; accepted 7 October 2020; published 20 October 2020)

In contrast to normal diffusion, there is no canonical model for reactions between chemical species which
move by anomalous subdiffusion. Indeed, the type of mesoscopic equation describing reaction-subdiffusion
systems depends on subtle assumptions about the microscopic behavior of individual molecules. Furthermore,
the correspondence between mesoscopic and microscopic models is not well understood. In this paper, we study
the subdiffusion-limited model, which is defined by mesoscopic equations with fractional derivatives applied
to both the movement and the reaction terms. Assuming that the reaction terms are affine functions, we show
that the solution to the fractional system is the expectation of a random time change of the solution to the
corresponding integer order system. This result yields a simple and explicit algebraic relationship between the
fractional and integer order solutions in Laplace space. We then find the microscopic Langevin description of
individual molecules that corresponds to such mesoscopic equations and give a computer simulation method to
generate their stochastic trajectories. This analysis identifies some precise microscopic conditions that dictate
when this type of mesoscopic model is or is not appropriate. We apply our results to several scenarios in
cell biology which, despite the ubiquity of subdiffusion in cellular environments, have been modeled almost
exclusively by normal diffusion. Specifically, we consider subdiffusive models of morphogen gradient formation,
fluctuating mobility, and fluorescence recovery after photobleaching (FRAP) experiments. We also apply our
results to fractional ordinary differential equations.

DOI: 10.1103/PhysRevE.102.042125

I. INTRODUCTION

Subdiffusion has been observed in very diverse sys-
tems [1–4] and is especially prevalent in cell biology [5,6].
Subdiffusion is defined by the following sublinear growth in
the mean-squared displacement of a tracer particle:

E[(Y (t ) − Y (0))2] ∝ tα, α ∈ (0, 1), (1)

where Y (t ) is the one-dimensional position of the particle at
time t � 0 and E denotes expectation.

A number of mathematical models yield the nonlinear
phenomenon in (1), including continuous-time random walks,
fractional Brownian motion, and random walks on fractal and
disordered systems [5]. The continuous-time random walk
model can be used to derive the following fractional diffusion
equation [7],

∂

∂t
c(x, t ) = 0D1−α

t K
∂2

∂x2
c(x, t ), x ∈ R, t > 0, (2)

for the concentration c(x, t ) of some chemical at position
x at time t . In the mesoscopic description (2), the param-
eter K > 0 is the generalized diffusivity [with dimensions
(length)2(time)−α] and 0D1−α

t is the Riemann-Liouville frac-
tional derivative [8],

0D1−α
t φ(t ) := d

dt

∫ t

0

1

�(α)(t − t ′)1−α
φ(t ′) dt ′, (3)

where �(α) is the gamma function.

*lawley@math.utah.edu

An important and now long-standing question is how to
model reaction kinetics for subdiffusive molecules (see the
review [9–19]). In contrast to normal diffusion, there is no
canonical model for modeling reactions between subdiffusive
molecules. Indeed, significantly different forms of reaction-
subdiffusion equations have been proposed (see [9] and also
the Discussion section below), and the structure of these
mesoscopic equations depends on subtle assumptions about
the microscopic behavior of individual molecules.

The following form of reaction-subdiffusion equations
has been proposed for so-called subdiffusion-limited sys-
tems [9,20,21],

∂

∂t
c = 0D1−α

t

(
diag(K1, . . . , Kn)

∂2

∂x2
c + f (c)

)
, (4)

where c is the vector of n chemical concentrations,

c(x, t ) = (ci(x, t ))n
i=1 ∈ Rn,

with n generalized diffusivities, K1, . . . , Kn, and

f : Rn �→ Rn

describes reactions between the n species. Importantly, the
fractional operator 0D1−α

t is applied to both the movement
and the reaction terms on the right-hand side of (4). Mod-
els of the form (4) have been derived from continuous-time
random walks [20], particularly those with instantaneous cre-
ation and annihilation [22]. Such models have also been
proposed to describe the numerical simulations of [21]. Sim-
ilar models have been used to study subdiffusive bimolecular
reactions [14,21,23,24], subdiffusive pattern formation [25],
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and traveling waves in subdiffusive media [26,27]. We note
that (4) is sometimes written with ∂

∂t replaced by the Caputo
derivative and 0D1−α

t replaced by the identity [9].
Many fundamental questions regarding equations of the

form (4) remain unanswered. What is the solution? How can
we investigate stability? What do such equations imply about
the stochastic movement and reactions of single molecules?
How can one simulate the stochastic trajectories of such in-
dividual molecules? What are some biophysical implications
for a system following such an equation?

In this paper, we answer these questions in the case that the
reaction term f (c) is an affine function of the chemical con-
centrations c. In particular, we consider fractional equations
of the general form

∂

∂t
c = D(Ac + r), x ∈ V ⊆ Rd , t > 0. (5)

In (5), V ⊆ Rd is a d-dimensional spatial domain (if V has a
boundary, then we also impose boundary conditions) and D is
the following integro-differential operator,

Dφ(t ) = d

dt

∫ t

0
M(t − t ′)φ(t ′) dt ′, (6)

where M(t ) is some given memory kernel [notice that (6)
reduces to (3) if M(t ) = 1

�(α)t1−α ]. Further, r = r(x) ∈ Rn is a
space-dependent, time-independent vector, and A is a linear,
spatial operator.

The main example that we have in mind is where r ≡ 0 and
A is the diffusion-advection-reaction operator,

Ac = (diag(L1, . . . ,Ln) + R(x))c =
⎛⎝L1c1

...

Lncn

⎞⎠ + R(x)c,

(7)

where R(x) : V �→ Rn×n is a space-dependent matrix and
L1, . . . ,Ln are n forward Fokker-Planck operators, each of
the form

Li f (x) := −
d∑

j=1

∂

∂x j
[μ j (x, i) f (x)]

+ 1

2

d∑
j=1

d∑
k=1

∂2

∂x j∂xk
[(σ (x, i)σ (x, i)	) j,k f (x)], (8)

where μ(x, i) ∈ Rd is the external force (drift) vector
and σ (x, i) ∈ Rd×m describes the space dependence and
anisotropy in the diffusivity for each chemical species i ∈
{1, . . . , n}. In this case, R(x) describes the reactions between
the n chemical species and Li describes the movement of
the ith species. In the absence of reactions, such equations
as (5)–(8) are called fractional Fokker-Planck equations [28].
Notice that (5)–(8) become (4) if d = 1, V = R, μ(x, i) = 0,
σ (x, i) = √

2Ki, and f (c) = R(x)c.
The rest of the paper is organized as follows. In Sec. II, we

show that the solution to (5) is

c(x, t ) = E[u(x, S(t ))], (9)

where u(x, s) satisfies the corresponding integer order equa-
tion [namely, (5) with D replaced by the identity] and S(t )
is the inverse of a Lévy subordinator with Laplace exponent
�(λ) given by the reciprocal of the Laplace transform of the
memory kernel in the integro-differential operator D in (6),

�(λ) = 1

M̂(λ)
,

where the Laplace transform in time is denoted by

φ̂(λ) :=
∫ ∞

0
e−λtφ(t ) dt .

We obtain (9) by proving the following algebraic relationship
between c and u in Laplace space:

ĉ(x, λ) = �(λ)

λ
û(x, �(λ)). (10)

We also show how (9) yields a sufficient condition for linear
stability when the reactions in (5) are nonlinear. In Sec. III,
we give the stochastic Langevin representation of individual
molecules described by (5) with A in (7) and (8). Specif-
ically, we construct a stochastic process whose probability
density satisfies (5)–(8) when R(x) has a certain probabilistic
structure. In this section, we also give a stochastic simu-
lation algorithm to generate realizations of the stochastic
process underlying (5). In Sec. IV, we apply our results
to some examples of biophysical interest. In particular, we
analyze subdiffusive models of protein gradient formation,
stochastically switching mobility, and fluorescence recovery
after photobleaching (FRAP) experiments. In Sec. V, we ap-
ply our results to fractional ordinary differential equations
(ODEs). We conclude by discussing related work and future
directions.

II. EXACT SOLUTION

In this section, we show that (9) satisfies the fractional
equations in (5) if u(x, s) satisfies the corresponding integer
order equations. The main rigorous result is Theorem 1 in
Sec. II A, which makes no reference to (5). Instead, Theorem 1
is a general result about the Laplace transform of any function
subordinated by a continuous, inverse Lévy subordinator [as
in (9)], assuming the function satisfies a mild integrability
assumption [see (14)]. In Sec. II B, we then show formally
how Theorem 1 implies that (9) satisfies (5). In Secs. II C
and II D, we work out some implications of this result.

A. Main theorem

Let the stochastic process T = {T (s)}s�0 be a Lévy subor-
dinator. That is, T is a one-dimensional, nondecreasing Lévy
process with T (0) = 0 [29,30]. For each fixed s > 0, assume
that T (s) is a continuous random variable, which means

P (T (s) = t ) = 0 for all s > 0 and t � 0. (11)
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Let �(λ) denote the Laplace exponent of T , which means that,
for all s � 0 and λ � 0,

E[e−λT (s)] = e−s�(λ), �(λ) = bλ +
∫ ∞

0
(1 − e−λz ) ν(dz),

(12)

where b � 0 is the drift and ν is the Lévy measure. Let S =
{S(t )}t�0 be the inverse subordinator of T :

S(t ) := inf{s > 0 : T (s) > t}. (13)

Notice that S(0) = T (0) = 0 almost surely. Notice also that
paths of S are continuous functions of t , since (11) implies
that paths of T are strictly increasing functions of s.

Theorem 1: Let

u(s) = (ui(s))n
i=1 : [0,∞) �→ Rn

be a given function of time. Fix λ > 0 and assume that for
each component i ∈ {1, . . . , n},∫ ∞

0
e−λtE|ui(S(t ))| dt < ∞. (14)

If we define c(t ) := E[u(S(t ))] for t � 0, then

λ̂c(λ) = �(λ)̂u(�(λ)).

The proof of Theorem 1 is given in the Appendix.

B. Fractional equations

We now use Theorem 1 to solve fractional equations. Con-
sider the fractional system

∂

∂t
c = D(Ac + r), x ∈ V ⊆ Rd , t > 0,

c(x, 0) = cinit(x), (15)

where V ⊆ Rd is some d-dimensional spatial domain and the
initial condition cinit is a given bounded function of space. As-
sume D is the integro-differential operator in (6) with memory
kernel M(t ) defined by its Laplace transform,

M̂(λ) = 1

�(λ)
, (16)

and assume M is sufficiently regular so that

lim
t→0+

∫ t

0
M(t ′) dt ′ = 0. (17)

Assume the operator A commutes with scalar multiplication,
Laplace transforms in time, and the fractional temporal oper-
ator D. That is, assume

Aβw(x, t ) = βAw(x, t ), (18)

̂(Aw)(x, λ) = Aŵ(x, λ), (19)

DAw(x, t ) = ADw(x, t ), (20)

for scalar constants β > 0 and functions

w : V × [0,∞) �→ Rn

in the domain of A. For example, if A is a sufficiently regular
linear differential operator acting on the spatial variable x [as

in (7)], then (18)–(20) hold. More generally, A could be a
linear integro-differential operator acting on x. In addition,
A need not even act on x, but could instead simply be a
matrix A = R ∈ Rn×n, in which case (15) becomes a system
of fractional ODEs (see Sec. V).

Suppose u(x, s) = (ui(x, s))n
i=1 satisfies the system of inte-

ger order equations corresponding to (15) with the same initial
condition,

∂

∂s
u = Au + r, x ∈ V ⊆ Rd , s > 0, u(x, 0) = cinit(x).

(21)

Assuming that (15) and (21) are sufficiently regular to admit
Laplace transformation, we claim that the following definition
of c(x, t ) satisfies (15):

c(x, t ) := E[u(x, S(t ))]. (22)

To see this, we work with the Laplace transforms of (15)
and (21), which are

λ̂c(x, λ) − cinit(x) = λ

�(λ)

[
Âc(x, λ) + r(x)

λ

]
, (23)

λ̂u(x, λ) − cinit(x) = Aû(x, λ) + r(x)

λ
. (24)

In obtaining (23) and (24), we used (18)–(20) and that

D̂c = λ

�(λ)
ĉ, D̂r = λ

�(λ)
r̂ = r

�(λ)
,

which follows from the convolution form of D in (6), the
relation in (16), and (17). Now, it is a straightforward algebra
exercise to use (18)–(20) to show that if û satisfies (24) and ĉ
and û satisfy the following relation,

λ̂c(x, λ) = �(λ)̂u(x, �(λ)), (25)

then ĉ satisfies (23). Of course, (25) is precisely the relation
found in Theorem 1 for each fixed x ∈ V .

Summarizing, if we define c by (22), then Theorem 1
implies that c and u satisfy (25). Therefore, if u satisfies the
Laplace space equation in (24) [which is equivalent to (21)],
then c satisfies the Laplace space equation in (23). But, the
Laplace space equation (23) is equivalent to (15). Hence, c
satisfies (15) as desired.

C. Boundary conditions

In the case that the spatial domain V ⊆ Rd is bounded,
we impose boundary conditions. Suppose the solution u(x, s)
to (21) satisfies boundary conditions of the form

A(x)
∂

∂n
u(x, s) + B(x)u(x, s) = v(x), x ∈ ∂V, (26)

where ∂
∂n denotes differentiation with respect to the nor-

mal derivative, A(x), B(x) ∈ Rn×n are given space-dependent
matrices, and v(x) ∈ Rn is a given space-dependent vector.
Then, it is immediate that c(x, t ) := E[u(x, S(t ))] satisfies the
boundary conditions in (26) assuming sufficient regularity to
interchange ∂

∂n with E. Similarly, if V ⊆ Rd is unbounded,
then appropriate growth conditions on u also apply to c.
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D. Steady states and stability

Formula (22) relates the fractional order solution c to the
integer order solution u. It follows from (22) that if u ap-
proaches a finite steady state,

uss(x) := lim
s→∞ u(x, s) ∈ Rn, (27)

then c inherits this same finite steady state,

lim
t→∞ c(x, t ) = uss(x). (28)

To see this, fix x ∈ V and let u(x, s) be any bounded function
of time s ∈ [0,∞) satisfying (27). Since S(t ) → ∞ as t →
∞ with probability 1, the Lebesgue dominated convergence
theorem yields (28).

We emphasize that the limit in (27) is assumed to be finite,
since it is possible for u to diverge and c to approach a finite
limit (see Sec. V below). Note that a steady state uss of (21)
satisfies Auss + r = 0. In the case that A is the reaction dif-
fusion operator in (7) and (8), the steady state uss satisfies the
spatial differential equation (diag(L1, . . . ,Ln) + R(x))uss =
−r. For a simple example, see Sec. IV A.

One consequence of (28) is that the stability of an inte-
ger order equation implies the stability of the corresponding
fractional order equation. Interestingly, the converse of this
statement is in general false. That is, stability of a fractional
equation does not imply stability of the corresponding integer
order equation (see Sec. V below).

A second consequence of (28) is that so-called linear
stability of integer order equations with nonlinear reactions
implies linear stability of fractional equations with nonlinear
reactions. Recall that a steady state of a nonlinear system is
said to be linearly stable if the system obtained by linearizing
about the steady state is stable [31,32]. Consider the system
of fractional equations,

∂

∂t
c = D(Ac + f (c)), (29)

where f : Rn �→ Rn is some nonlinear function of c. Suppose
that (29) has a steady state, css ∈ Rn, which implies

Acss + f (css) = 0. (30)

Define b(x, t ) via the relation c(x, t ) = css + εb(x, t ), and
assume b(x, 0) is order 1 and ε � 1. Differentiating b(x, t ),
Taylor expanding f about css, and using (30) yields

∂

∂t
b = 1

ε

∂

∂t
c = 1

ε
D(A(css + εb) + f (css + εb))

= D(Ab + Rf b) + O(ε), (31)

where Rf ∈ Rn×n is the Jacobian of f evaluated at css. Neglect-
ing the order ε term in (31) yields the leading order linear
equation

∂

∂t
b0 = D(Ab0 + Rf b0). (32)

The steady state css is said to be linearly stable if limt→∞ b0 =
0 [31]. Note that linear stability does not always imply stabil-
ity of the nonlinear system (29), meaning limt→∞ b0 = 0 may
not imply limt→∞ c = css [33].

Since (32) is linear, the solution is b0(x, t ) = E[u(x, S(t ))]
where u(x, s) satisfies (32) with D replaced by the

identity. Hence, if lims→∞ u(x, s) = 0, then (28) implies
limt→∞ b0(x, t ) = 0, and thus the steady state, css, for the
fractional nonlinear equation (29) is linearly stable. But, the
equation for u is merely the linearization of (29) with D
replaced by the identity. Therefore, we conclude that linear
stability of a nonlinear, integer order equation implies linear
stability of the corresponding nonlinear, fractional order equa-
tion. However, we again caution that stability of a fractional
equation does not imply stability of the corresponding inte-
ger order equation (see Sec. V below). Summarizing, linear
stability of an integer order equation is a sufficient (but not
necessary) condition for linear stability of the corresponding
fractional equation.

III. STOCHASTIC REPRESENTATION

In this section, we construct a stochastic process whose
probability density satisfies (5) in the case that r ≡ 0 and
the operator A is given by (7) and the reaction matrix R(x)
has a certain probabilistic structure. In particular, we assume
that for each x ∈ V ⊆ Rd , the matrix R(x) has non-negative
off-diagonal entries [meaning R(x) is a so-called Metzler ma-
trix [34]] and the diagonal entries are such that each column
of R(x) sums to zero.

A. Internal Markov process

In order to construct a non-Markovian stochastic process
(Y (t ), J (t )) whose probability density satisfies a fractional
equation, we first construct a Markov process (X (s), I (s)). We
then define (Y (t ), J (t )) as a subordination (i.e., a random time
change) of (X (s), I (s)).

Suppose {X (s)}s�0 satisfies the stochastic differential equa-
tion (SDE),

dX (s) = μ(X (s), I (s)) ds + σ (X (s), I (s)) dW (s), (33)

where {W (s)}s�0 is a standard m-dimensional Brownian mo-
tion and μ and σ are as in (8). Notice that the SDE (33)
depends on I (s). We suppose {I (s)}s�0 is a continuous-time
jump process on {1, . . . , n} that jumps from state I (s) = i to
state j = i at rate (R(X (s))) j,i � 0 at time s � 0.

In words, X (s) follows an SDE whose right-hand side
switches according to the jump process I (s), and the jump
rates of I (s) may depend on the position X (s). To illustrate,
if the initial state is I (0) = i, then X (s) diffuses with drift
μ(X (s), i) and diffusivity 1

2σ (X (s), i)2 until I jumps to a
new state j = i. Then, X (s) diffuses with drift μ(X (s), j)
and diffusivity 1

2σ (X (s), j)2 until I jumps again, etc. The
process (X (s), I (s)) is sometimes called a hybrid switching
diffusion [35]. The word “hybrid” is used because the process
combines the continuous dynamics of X (s) with the discrete
dynamics of I (s). For a specific example of (X (s), I (s)), see
Sec. IV B below.

The precise mathematical definition of (X (s), I (s))
is in terms of its infinitesimal generator. Precisely,
{(X (s), I (s))}s�0 is a Markov process on the state space
V × {1, . . . , n} with generator G defined by

G f (x, i) = L∗
i f (x, i) +

n∑
j=1

(R	(x))i, j f (x, j),
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where L∗
i is the formal adjoint of Li in (8) and R	 is the

transpose of R, meaning (R	(x))i, j = (R(x)) j,i. The genera-
tor G acts on functions f (x, i) : V × {1, . . . , n} �→ R which
are twice-continuously differentiable in x. In the language of
Markov processes, G is the backward operator corresponding
to the forward operator A.

Let qi(x, s) be the probability density that X (s) = x and
I (s) = i. If we define the vector q(x, s) = (qi(x, s))n

i=1 ∈ Rn,
then the forward Fokker-Planck equation for q is

∂

∂s
q = Aq, x ∈ V ⊆ Rd , s > 0. (34)

In the case that V has a boundary, boundary conditions are
imposed on q corresponding to the assumed behavior of X (s)
on the boundary. For example, if X (s) reflects from some
portion of the boundary ∂V0 ⊆ ∂V when I (s) = i, then

∂

∂n
qi(x, s) = 0, x ∈ ∂V0.

Alternatively, if X (s) is absorbed at ∂V0 when I (s) = i, then

qi(x, s) = 0, x ∈ ∂V0.

B. Random time changed process

Let {S(t )}t�0 be the inverse subordinator in (13) that
is taken to be independent of {(X (s), I (s))}s�0. Define the
stochastic process

(Y (t ), J (t )) := (X (S(t )), I (S(t ))), t � 0. (35)

Let pi(x, t ) be the probability density that Y (t ) = x and J (t ) =
i and define the vector p(x, s) = (pi(x, s))n

i=1. By conditioning
on the value of S(t ) and using independence, it follows that

p(x, t ) = E[q(x, S(t ))].

Therefore, our analysis in Sec. II yields

∂

∂t
p = DAp, x ∈ V ⊆ Rd , t > 0, (36)

and p satisfies the same boundary conditions as q.
Summarizing, the (mesoscopic) fractional reaction-

subdiffusion equations in (36) describe (microscopic)
individual stochastic molecules which evolve according
to (35). In particular, Y (t ) denotes the spatial position of a
particle and J (t ) denotes its discrete state. We now investigate
the dynamics of (Y (t ), J (t )) to understand what fractional
reaction-diffusion equations of the form (36) imply about the
dynamics of individual molecules.

We see from (35) and (33) that the particle subdiffuses with
dynamics that switch according to its discrete state. In partic-
ular, the path of Y (t ) follows the path of X (s), but the motion
of Y (t ) is punctuated by “pauses” of the inverse subordinator
S(t ) (which correspond to jumps of the subordinator T (s); see
Sec. IV B). Analogously, J (t ) follows the path of I (s), but
J (t ) pauses when S(t ) pauses. Importantly, notice that J (t )
pauses exactly when Y (t ) pauses, and therefore J (t ) cannot
jump when Y (t ) is paused. Hence, we obtain one simple
microscopic property implied by the mesoscopic equations
in (36).

Next, we investigate the time between jumps of J (t ). In the
case that R(x) is constant in space, the jump times of I (s) are

exactly exponentially distributed. In particular, the time that
I (s) spends in state i is an exponential random variable with
rate λi := ∑

j =i R j,i. Letting σ denote this exponential time, it
follows that J (t ) spends time T (σ ) in state i. We thus obtain
an additional microscopic property implied by the mesoscopic
equations in (36).

Moreover, we can compute the probability distribution for
the sojourn time T (σ ) in the typical case that the fractional op-
erator is the Riemann-Liouville derivative, D = 0D1−α

t in (3)
with α ∈ (0, 1). In this case, the subordinator T is an α-stable
subordinator. A direct calculation shows that this random time
has the following distribution [36,37]:

P (T (σ ) > t ) = Eα (−λit
α ), t > 0, (37)

where Eα is the Mittag-Leffler function,

Eα (z) :=
∞∑

k=0

zk

�(1 + αk)
.

Hence, a microscopic condition implied by the mesoscopic
equations in (36) in this case is that the particle switches states
at Mittag-Leffler distributed times described by (37).

C. Stochastic simulation

Having constructed the stochastic process (Y (t ), J (t ))
in (35) that corresponds to the fractional equations (36), we
can simulate stochastic paths of this process. This simulation
involves two main steps: (i) approximating the path of the
internal Markov process {(X (sk ), I (sk ))}k on some internal
time mesh {sk}k , and (ii) approximating the path of the inverse
subordinator {S(tk )}k on some time mesh {tk}k .

Step (i) is well studied (for example, see Chap. 5 in [35]).
Furthermore, if the transition rate matrix is constant [R(x) ≡
R], then step (i) entails merely simulating paths of I (s) (which
can be done exactly and efficiently with the Gillespie algo-
rithm [38]) and simulating paths of X (s) between jumps of
I (s), which can be done with any simulation method for SDEs
(see [39]).

Step (ii) depends on the particular subordinator T (s) under
consideration. In the case that T (s) is an α-stable subordina-
tor, Magdziarz et al. [40] developed an efficient algorithm for
simulating paths of T (s) and S(t ). Carnaffan and Kawai [41]
developed methods for simulating paths of T (s) and S(t ) for
the cases that T (s) is a tempered stable subordinator or a
gamma subordinator.

Having obtained the simulated values {(X (sk ), I (sk ))}k

and {S(tk )}k by the methods just referenced, one can obtain
X (S(tk )) from a simple linear interpolation between X (sk ) and
X (sk+1), where the index k is chosen so that sk � S(tk ) �
sk+1. Similarly, one can set I (S(tk )) = I (s̃k ) where k̃ is the
largest index such that s̃k � S(tk ). We illustrate this method
in Sec. IV B below.

IV. BIOPHYSICAL APPLICATIONS

We now apply our results to some biophysical systems
which have typically been modeled by normal diffusion.
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A. Subdiffusive morphogen gradient formation

The formation of morphogen gradients, such as the bi-
coid gradient of Drosophila, is often modeled by diffusion
away from a localized source and subsequent degradation.
The degradation often results from binding to receptors in the
cell membrane [42]. The basic theory can be illustrated with a
reaction-diffusion equation [43],

∂

∂s
u = D

∂2

∂x2
u − ku, x > 0, s > 0, (38)

modeling the protein (morphogen) concentration u(x, s) at
position x at time s, which diffuses with diffusivity D > 0 and
degrades at rate k > 0. The protein source can be modeled by
specifying a constant flux ϕ > 0 boundary condition at x = 0,

−D
∂

∂x
u = ϕ > 0, x = 0, (39)

and it is assumed that there is no protein initially,

u = 0, s = 0. (40)

The solution to (38)–(40) is [44]

u(x, s) = uss(x)

[
1 − 1

2
erfc

(√
s − x√

4s

)

− e2x

2
erfc

(√
s + x√

4s

)]
, (41)

where x = (
√

k/D)x and s = ks are dimensionless space and
time variables and the steady-state solution is the decaying
exponential,

uss(x) = ϕ√
Dk

e−x. (42)

A common tool to characterize the time it takes the
time-dependent gradient (41) to approach the steady-state gra-
dient (42) is the accumulation time [43,45]. The accumulation
time τ (x) is defined by

τ (x) :=
∫ ∞

0
−s

∂R

∂s
(x, s) ds =

∫ ∞

0
R(x, s) ds, (43)

where R(x, s) is the local relaxation function which measures
the approach of u(x, s) to uss(x),

R(x, s) = u(x, s) − uss(x)

u(x, 0) − uss(x)
= 1 − u(x, s)

uss(x)
. (44)

The relaxation function R(x, s) is similar to a survival proba-
bility, and thus the accumulation time τ (x) is analogous to a
mean first passage time [43,45]. Using (41), it is straightfor-
ward to calculate that (43) is

τ (x) = 1

2k
(1 + (

√
k/D)x).

We can now use the analysis in Secs. II and III above to
investigate how this standard theory is modified if the proteins
move subdiffusively and the degradation is subdiffusion lim-
ited. Indeed, since degradation requires that a protein reaches
a receptor, it is quite plausible that the degradation could
be limited by the subdiffusive proteins. Analogous to (38)

and (39), the subdiffusive protein concentration c(x, t ) now
satisfies

∂

∂t
c = D

(
D

∂2

∂x2
c − kc

)
, x > 0, t > 0,

− D
∂

∂x
c = ϕ0 > 0, x = 0, c = 0, t = 0,

(45)

for some integro-differential operator D as in (6). Note that
the parameters D and k in (38) and (39) necessarily differ
from the D and k in (45) (they have different units), but we
keep the same notation for simplicity. To solve (45), we take
the Laplace transform of the time-dependent diffusive solution
in (41) and use the relation (25) of Sec. II above to obtain the
Laplace transform of the solution to (45),

ĉ(x, λ) = �(λ)

λ
û(x, �(λ))

= uss(x)
exp(x(1 − √

1 + �(λ)/k))

λ
√

1 + �(λ)/k
, (46)

where �(λ) is the Laplace exponent corresponding to D (see
Sec. II A). Multiplying (46) by λ and using that �(λ) → 0 as
λ → 0 and the final value theorem of Laplace transforms con-
firms the desired result that c(x, t ) → uss(x) as t → ∞. That
is, the steady-state behavior of the subdiffusive solution is
identical to the steady-state behavior of the diffusive solution.
This result can also be seen from (27) and (28) in Sec. II D
above.

We are not able to analytically invert the Laplace trans-
form in (46). Nevertheless, for a particular choice of �(λ),
it straightforward to numerically invert (46) to obtain c(x, t ).
In Fig. 1, we plot the protein concentration for the Laplace
exponent,

�(λ) = λα, α ∈ (0, 1], (47)

which corresponds to the Riemann-Liouville operator D =
0D1−α

t in (3). In the top panel in Fig. 1, we plot the protein
concentration as a function of time for x = 1 and α = 2/3,
α = 9/10, and α = 1 (the case α = 1 corresponds to normal
diffusion). In the bottom panel in Fig. 1, we plot the protein
concentration as a function of space at a sequence of three
time values. In these plots, we set k, D, and ϕ to unity, and
so the time, space, and concentrations can be interpreted as
dimensionless.

From Fig. 1, we see that (i) the protein concentration grows
more quickly at early times for smaller values of α and (ii)
the protein concentration grows more slowly at later times for
smaller values of α. In addition, the approach of the subdif-
fusive concentration c(x, t ) to the steady state uss(x) can be
seen in Fig. 1. However, we claim that the accumulation time
formalism described above fails to quantify the timescale of
this subdiffusive approach. To see this, define the subdiffusive
accumulation time τsub(x) analogously to the diffusive accu-
mulation time in (43),

τsub(x) :=
∫ ∞

0
Rsub(x, t ) dt,
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FIG. 1. Diffusive and subdiffusive gradient formation. The top
panel plots the solution c(x, t ) to (45) as a function of time at
x = 1. The dashed curve is for α = 2/3, the dot-dashed curve is
for α = 9/10, and the solid curve is normal diffusion (α = 1). The
bottom panel plots c(x, t ) as a function of x for t = 0.1, 0.5, 4. The
dashed, dot-dashed, and solid curves in the bottom panel correspond
respectively to α = 2/3, α = 9/10, and α = 1, as in the top panel.
See the text for more details.

where the subdiffusive local relaxation function Rsub(x, t ) is
defined analogously to (44),

Rsub(x, t ) = c(x, t ) − css(x)

c(x, 0) − css(x)
= 1 − c(x, t )

uss(x)
.

Using that τsub(x) can be written in terms of the Laplace
transform of Rsub(x, t ) and using (46), we then obtain

τsub(x) = lim
λ→0+

R̂sub(x, λ) = τ (x) lim
λ→0+

�(λ)

λ
.

Using the value �(λ) = λα in (47) corresponding to the
Riemann-Liouville fractional derivative, we obtain that the
accumulation time is infinite if α ∈ (0, 1):

τsub(x) = ∞. (48)

The result in (48) is not surprising since τsub(x) is defined
analogously to a mean first passage time and it is known
that subdiffusive processes typically have infinite mean first
passage times [46].

Summarizing, compared to normal diffusion, we see that
this subdiffusive model of gradient formation yields a pro-
tein concentration that grows faster at early times and slower
at later times. Further, while the subdiffusive concentration
approaches the diffusive steady state at large time, the accu-
mulation time formalism does not describe this timescale.

B. Switching subdiffusivity

A variety of systems in cell biology are characterized
by macromolecules whose diffusivity randomly switches be-
tween two or more discrete values [47]. For example, AMPA
receptors on the postsynaptic membrane switch between fast
diffusive and stationary modes [48]. Similarly, LFA-1 recep-
tors switch between fast and slow diffusive modes [49,50].
Indeed, the prevalence of such processes in cell biology is
evidenced by the various statistical methods that have been
created to study single particle tracking data and detect fluc-
tuations in diffusion coefficients [49–55].

Switching diffusion coefficients often model (a) binding
and unbinding of the diffusing particle to other molecules that
alter its mobility or (b) switching conformations, with distinct
mobilities corresponding to the effective sizes of the confor-
mations [56–58]. If the motion of the particles is subdiffusive,
and the factors causing the subdiffusion similarly hamper the
transitions between states, then the spatiotemporal evolution
of the particle population could be modeled by an equation of
the form in (5). To illustrate, consider

∂

∂t

(
c0

c1

)
= D�

(
K0c0

K1c1

)
+ D

(−λ0 λ1

λ0 −λ1

)(
c0

c1

)
, (49)

which models a population of particles that switch between
two states and subdiffuse in state j ∈ {0, 1} with generalized
diffusivity Kj . If D = 0D1−α

t , then Sec. III shows that the
dwell times in each state have the Mittag-Leffler distribution
[see (37)].

Further, Sec. III shows that the stochastic state of an indi-
vidual particle following (49) is given by

(Y (t ), J (t )) := (X (S(t )), I (S(t ))) ∈ V × {0, 1},
where S(t ) is the inverse of a subordinator T (s) with Lévy
exponent given by the reciprocal of the Laplace transform of
the memory kernel in D (see Sec. II A), I (s) ∈ {0, 1} is a two-
state Markov jump process with jump rates λ0 and λ1, and
X (s) follows the switching SDE,

dX (s) = √
2KI (s) dW (s).

In Fig. 2, we plot a realization of (Y (t ), J (t )) and the
corresponding realizations of S(t ), X (s), I (s), and T (s) by em-
ploying the method described in Sec. III C above. In this plot,
we take the fractional operator to be the Riemann-Liouville
derivative, D = 0D1−α

t , with α = 3/4, and set λ0 = λ1 and
K1/K0 = 100 so that the process moves much more quickly
in state 1 compared to state 0.

In the top panel of Fig. 2, we plot T , I , and X as func-
tions of the internal time s. Notice that T (s) is an increasing
process which occasionally takes large jumps. Notice also
that X (s) diffuses much faster when I (s) = 1 compared to
when I (s) = 0. In the bottom panel, we plot S, J , and Y as
functions of time t . Notice that jumps in T correspond to flat
periods or “pauses” in S. Notice also that both J and Y pause
when S pauses. In particular, though I (s) switches states at
exponentially distributed times, the pauses in J (t ) induced by
S(t ) make J (t ) switch states at Mittag-Leffler distributed times
[see (37)]. Furthermore, notice that if Y is not paused, then it
moves much more quickly when J (t ) = 1 compared to when
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s = internal time

T (s)
I(s)
X(s)

t = time

S(t)
J(t)
Y (t)

FIG. 2. Switching subdiffusivity. In the top panel, we plot T (s),
I (s), and X (s) as functions of the internal time s. In the bottom panel,
we plot S(t ), J (t ), and Y (t ) as functions of time t . See the text for
details.

J (t ) = 0. We note that we have shifted and scaled the vertical
axes in Fig. 2 so that the various curves fit on the same plots.

C. Space-dependent switching and gradient formation

In the example in Sec. IV B above, the particles switch
states at rates that are independent of their spatial position.
It was recently shown that space-dependent switching can
induce the formation of protein concentration gradients in-
side a single cell [57]. This mechanism of gradient formation
is particularly notable since the more classical mechanism
involving diffusion away from a localized source and subse-
quent degradation (as in Sec. IV A above) typically fails at
subcellular length scales [59,60].

This situation has been modeled by [57,61]

∂

∂s

(
u0

u1

)
= �

(
K0u0

K1u1

)
+ 1

ε

(−λ0(x) λ1(x)
λ0(x) −λ1(x)

)(
u0

u1

)
,

(50)

where u j (x, s) is the concentration of molecules in state j ∈
{0, 1} at time s � 0 at position x in the finite interval [0, L].
Notice that the rate λ j (x) of leaving state j depends on the cur-
rent spatial position. In (50), a small dimensionless parameter
ε > 0 has been introduced to model switching that occurs on
a much faster timescale than gradient formation. It was shown
in [61] that if ε � 1, then the large-time total concentration

u(x) := lims→∞ u0(x, s) + u1(x, s) is proportional to

u(x) ∝
(

λ1(x)

λ0(x) + λ1(x)
K0 + λ0(x)

λ0(x) + λ1(x)
K1

)−1

, (51)

assuming no flux boundary conditions for u j at x = 0, L. The
form in (51) means that molecules concentrate in regions
where they are more likely to be in a slower state. This
point is related to a fairly subtle point regarding Itó versus
Stratonovich stochastic integration [62,63].

Given the ubiquity of subdiffusive motion inside cells, it is
natural to ask if this same mechanism for gradient formation
exists for subdiffusion. If the reactions causing the transitions
between states is subdiffusion limited, then the concentrations
c0(x, t ) and c1(x, t ) can be modeled by Eqs. (50) with the
operator D applied to the righthand side. Our analysis in
Sec. II thus shows that the subdiffusive concentrations are
c j (x, t ) = E[u j (x, S(t ))]. It then follows from our analysis in
Sec. II D that the large-time total subdiffusive concentration is
exactly given by (51), which shows that this mechanism of in-
tracellular gradient formation extends to subdiffusive motion.

D. FRAP experiments

Fluorescence recovery after photobleaching (FRAP) is a
commonly used experimental method for studying binding
interactions in cells [64,65]. Though subdiffusion is widely
observed in cells, the vast majority of mathematical models
of FRAP experiments assume that the molecules move by
normal diffusion (but see the work of Yuste et al. [66] for a
notable exception).

In the case of normal diffusion, the influential work of
Sprague et al. [67] considers the following linear reaction-
diffusion equations describing a FRAP system in a two-
dimensional disk,

∂u0

∂s
= D

(
1

r

∂

∂r
+ ∂2

∂r2

)
u0 − konu0 + koff u1,

∂u1

∂s
= konu0 − koffu1, (52)

for free (respectively bound) proteins u0(r, s) [respectively
u1(r, s)] at radius r ∈ (0, ρ) at time s � 0. In order to compare
to experimental data, one calculates the so-called FRAP curve,
which is the sum u0 + u1 averaged over the disk,

frap(s) := 2

ρ2

∫ ρ

0
(u0(r, s) + u1(r, s))r dr. (53)

While an explicit formula for (53) is unknown, Sprague
et al. [67] found the following exact formula for its Laplace
transform:

f̂rap(λ) = 1

λ
− kon

(λ + koff )(kon + koff )

− koff

λ(kon + koff )
(1 − 2K1(qρ)I1(qρ))

×
(

1 + kon

λ + koff

)
, (54)
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FIG. 3. FRAP curves for normal diffusion (blue solid) and subd-
iffusion (red dashed) can fit experimental data (black circles) of [67].
See the text for details.

where I1 and K1 are modified Bessel functions of the first and
second kind and

q =
√

λ

D

(
1 + kon

λ + koff

)
.

Note that (54) has been normalized so that it yields
lims→∞ frap(s) = 1. The Laplace transform (54) can be in-
verted numerically to yield the FRAP curve (53) and then be
compared to experimental data [67].

We can extend these results to the case that the proteins
move by subdiffusion and the reactions are subdiffusion lim-
ited. In particular, suppose the subdiffusion is modeled with
the fractional operator D in (6). Let frapsub(t ) denote the
subdiffusive FRAP curve defined as in (53), but where u0

and u1 are replaced by c0 and c1 which satisfy (52) with D
applied to the right-hand sides. Theorem 1 then implies that
the Laplace transform of the subdiffusive FRAP curve is given
explicitly in terms of (54),

̂frapsub(λ) = �(λ)

λ
f̂rap(�(λ)), λ > 0, (55)

where �(λ) corresponds to D (see Sec. II A). As above, (55)
can be inverted numerically to yield the subdiffusive FRAP
curve.

In Fig. 3, we plot the diffusive FRAP curve and the subd-
iffusive FRAP curve as functions of time. The circles in the
top panel in Fig. 3 are experimental data points from Fig. 5E
in [67]. Similarly, the circles in the bottom panel in Fig. 3
are data points from Fig. 5F in [67]. Figure 3 shows that

the subdiffusion-limited FRAP model described above can fit
the experimental data of [67]. In particular, the subdiffusion-
limited FRAP model and the normal diffusion FRAP model
fit the experimental data of [67] roughly equally well. Hence,
these data alone cannot distinguish between the two models.
This figure follows Figs. 1 and 2 in [66] that showed that a
different subdiffusive FRAP model can also fit the experimen-
tal data of [67] roughly equally well as the normal diffusion
model.

The parameters used in Fig. 3 are as follows. In Fig. 3,
the radius is ρ = 1.1 μm in the top panel and ρ = 0.5 μm in
the bottom panel. For diffusive FRAP (blue solid curves), we
take kon = 400 s−1, koff = 78.6 s−1, and D = 9.2 μm2 s−1 in
both panels. For the subdiffusive FRAP (red dashed curves),
we take the fractional operator to be the Riemann-Liouville
operator D = 0D1−α

t with α = 0.75, and set kon = 750 s−α ,
koff = 17 s−α , and D = 82 μm2 s−α in both panels. The pa-
rameters for the diffusive FRAP curves were used in Fig. 5F
in [67] (slightly different parameters were used in Fig. 5E
in [67], but we use the same parameters in both panels).

V. FRACTIONAL ODES

Our results hold in significant generality, essentially re-
quiring only that the operator A commutes with temporal
operators [see (18)–(20)]. Indeed, the equations need not even
involve the spatial variable x, and can instead be a system of
fractional ODEs. Fractional ODEs have been used to model
a variety of systems, including pharmacokinetics [68] and the
spread of an infectious disease through a population [69].

A. Solution

Consider the affine fractional ODEs,

d

dt
c(t ) = D(Rc(t ) + r), (56)

where c(t ) = (ci(t ))n
i=1 ∈ Rn is a time-dependent solution

vector and R ∈ Rn×n is a matrix and r ∈ Rn is a vector. In
this case, Sec. II yields the relations

c(t ) = E[u(S(t ))], ĉ(λ) = �(λ)

λ
û(�(λ)), (57)

as in (9) and (10), where u satisfies the ODE

d

ds
u(s) = Ru(s) + r, (58)

with u(0) = c(0) ∈ Rn.
The solution u(s) to (58) is of course

u(s) = eRsu(0) +
∫ s

0
eR(s−σ )r dσ

=
∞∑

k=0

Rksk

k!
u(0) +

∞∑
k=0

Rksk+1

(k + 1)!
r.

Hence, (57) yields the following explicit formula for the frac-
tional solution in terms of the moments of S(t ):

c(t ) =
∞∑

k=0

RkE[(S(t ))k]

k!
c(0) +

∞∑
k=0

RkE[(S(t ))k+1]

(k + 1)!
r. (59)
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In the case that the fractional operator is the Riemann-
Liouville derivative, D = 0D1−α

t , we have that [70]

E[(S(t ))k] = tαkk!

�(1 + αk)
. (60)

Plugging (60) into (59) yields a formula for c(t ) that agrees
with a recent result of Duan [71].

B. Steady states and stability

Equations (27) and (28) in Sec. II D above show that if
u approaches a finite limit at large time, then c must also
approach this same limit at large time. Furthermore, the results
of Sec. II D yield that if a nonlinear integer order ODE is
linearly stable, then the corresponding nonlinear fractional
order ODE is also linearly stable.

However, we caution that the stability of an integer order
ODE cannot be inferred from the stability of the corre-
sponding fractional ODE. Indeed, if the fractional operator
is the Riemann-Liouville operator, D = 0D1−α

t , then it is
known [72,73] that the origin is asymptotically stable for the
linear fractional ODE

d

dt
c(t ) = 0D1−α

t Rc(t ), (61)

if and only if

|Arg(ν)| >
απ

2
, (62)

for every eigenvalue ν ∈ C of R ∈ Rn×n, where Arg(ν) ∈
(−π, π ] denotes the principal argument of ν. Notice that (62)
generalizes the classical result for integer order ODEs with
α = 1. Hence, if R satisfies (62) and

|Arg(ν)| <
π

2
,

for some ν ∈ C, then the solution to (61) vanishes but the
solution to the corresponding integer equation diverges.

C. Stochastic representation

The stochastic representation of Sec. III above still holds
in the nonspatial case of (56) if r = 0 and R is the forward
operator for a continuous-time Markov chain (as in Sec. III).
In this case, if {I (s)}s�0 is a continuous-time Markov chain
with forward operator R, then the probability distribution of
J (t ) := I (S(t )) satisfies (56) with r = 0. We note that this
connection between fractional order and integer order Markov
chains was investigated in [37,74–81] in the case that D is
the Riemann-Liouville derivative and {I (s)}s�0 is a Poisson
process.

VI. DISCUSSION

We have analyzed subdiffusion-limited mesoscopic equa-
tions describing a reaction-subdiffusion system in a general
mathematical setting, under the assumption that the reactions
are affine. We have shown that the solution to this fractional
system is the expectation of a random time change of the
corresponding integer order system. This result yielded (i)
a simple algebraic relation between the fractional solution

and the integer order solution in Laplace space, (ii) a suffi-
cient condition for the linear stability of fractional equations
with nonlinear reactions in terms of the linear stability of
the corresponding integer order equations, and (iii) the exact
microscopic description of single molecules corresponding to
these mesoscopic equations and a numerical method for their
stochastic simulation.

These results extend previous results for subdiffusive
systems with no reactions. Barkai [82] found the solu-
tion to a fractional Fokker-Planck equation in R in terms
of the solution to the corresponding integer order Fokker-
Planck equation in the case that the fractional operator is
the Riemann-Liouville derivative. Magdziarz [83] found the
stochastic representation for such fractional Fokker-Planck
equations in R when the fractional operator involves a gen-
eral memory kernel. This was further generalized in [84] by
Magdziarz and Zorawik. In addition, fractional Fokker-Planck
equations in Rd with general memory kernels were considered
by Carnaffan and Kawai [41]. Similar stochastic represen-
tations of solutions to fractional equations have been found
in [85–88]. An additional related work is that of Yadav and
Horsthemke [32], which derived a different class of reaction-
subdiffusion equations and analyzed their linear stability.

An alternative to the subdiffusion-limited model consid-
ered in the present work is the activation-limited model [9]. In
contrast to subdiffusion-limited reactions, activation-limited
reaction rates are unaffected by subdiffusive processes. To
illustrate in a simple example, consider a chemical which (i)
subdiffuses in Rd with generalized diffusivity K > 0 and (ii)
switches between n discrete states according to a constant
reaction rate matrix R ∈ Rn×n. Let c(x, t ) denote the vector of
these n chemical concentrations. In the subdiffusion-limited
model, c evolves according to

∂

∂t
c = D(K�c + Rc), x ∈ Rd , t > 0, (63)

where D is as in Sec. II. In the activation-limited model, c
evolves according to [22,89–92]

∂

∂t
c = eRtDe−Rt K�c + Rc, x ∈ Rd , t > 0, (64)

where e±Rt denotes the matrix exponential.
As we showed in Sec. III, (63) describes individual

molecules whose discrete state dynamics depend on their sub-
diffusive behavior. Indeed, molecules following (63) cannot
switch state when they are in a subdiffusive “pause,” and this
forces the random time between switches to have a Mittag-
Leffler distribution [see (37)]. In contrast, it was recently
proven in [92] that (64) is a direct consequence of the inde-
pendence of the discrete state and subdiffusive motion, and
thus the molecules switch states at exponentially distributed
times.

Differences between (63) and (64) can also be seen by ex-
amining their solutions. Assume an initial condition c(x, 0) =
u0(x)v for some function u0 : Rd �→ R and some vector v ∈
Rn. If u(x, s) ∈ R satisfies the single-component normal dif-
fusion equation,

∂

∂s
u = K�u, x ∈ Rd , s > 0,

u = u0, x ∈ Rd , s = 0,
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then it follows from the analysis in Sec. II that the solution
to (63) is

c(x, t ) = E[u(x, S(t ))eRS(t )]v, (65)

where S(t ) is as in Sec. II. In contrast, it follows from Sec. II
above and the results of [92] that the solution to (64) is

c(x, t ) = E[u(x, S(t ))]eRt v. (66)

Since the matrix exponential describes molecular reactions,
it is evident that subdiffusion modifies the reactions in (65)
[since the matrix exponential is subordinated by S(t )],
whereas the reactions are unaffected by subdiffusion in (66).

We used our results to explore how subdiffusion modifies
several models in cell biology. The Laplace space relation
we found between solutions to fractional and integer order
equations allowed us to quickly convert results from diffusive
models to subdiffusive models. Our results suggest that mech-
anisms for gradient formation which have been formulated for
diffusive molecules extend to subdiffusive molecules. In addi-
tion, it is interesting that our subdiffusive FRAP model closely
fits data from FRAP experiments [67] (the fit is roughly the
same as the normal diffusion FRAP model). This parallels the
work of Yuste et al. [66], which found similar results for a
different subdiffusive FRAP model.

More generally, subordination methods (i.e., random time
changes) similar to the one employed in the present work
have been used to understand stochastic phenomena in many
physical problems. For example, a variety of systems exhibit
“anomalous yet Brownian” diffusion, which is defined by a
linear mean-squared displacement with non-Gaussian incre-
ments [93]. Such systems have been modeled by diffusing
diffusivity [94], which is equivalent to a certain subordination
of diffusion [95]. In addition, subdiffusion and superdiffusion
have been modeled by grey Brownian motion [96,97], which
can be represented in terms of a subordination of more classi-
cal processes [98].

We also applied our results to fractional ODEs. Our work
extends recent solution formulas for fractional ODEs [71]
to more general fractional operators. In addition, our work
complements and extends some previous work on fractional
Poisson processes [37,74–81].

While our results are formulated in significant mathemat-
ical generality, we did assume that the reactions are affine
functions, which is perhaps the main limitation of our results.
Some previous studies considered models with nonlinear re-
actions (often mass action kinetics) [14,21,23–27]. Hence,
further investigating the relationship between fractional and
integer order equations involving nonlinearities remains an
important direction for future work.
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APPENDIX

In this Appendix, we give the proof of Theorem 1. The
proof relies on the following lemma. We write τ =d exp(λ)
to denote that τ is exponentially distributed with rate λ > 0,
which means P (τ > t ) = e−λt for each t > 0.

Lemma 1. If τ =d exp(λ) and is independent of T , then

S(τ ) =d exp(�(λ)).

Proof of Lemma 2. Fix s > 0. Using the definition of S(t )
in (13) and the independence of T and τ , conditioning on the
value of τ gives

P (S(τ ) > s) =
∫ ∞

0
F (t )λe−λt dt, (A1)

where F (t ) := P (T (s) � t ) and we have used (11). Integrat-
ing by parts in (A1) yields∫ ∞

0
F (t )λe−λt dt =

∫ ∞

0
e−λt dF (t ), (A2)

since limt→∞ e−λt F (t ) = 0 and F (0) = P (T (s) � 0) = 0
by (11) since s > 0. Now, (12) implies that the Riemann-
Stieltjes integral on the right-hand side of (A2) is∫ ∞

0
e−λt dF (t ) = E[e−λT (s)] = e−s�(λ). (A3)

Combining (A1)–(A3) completes the proof. �
The proof of Theorem 1 follows quickly from Lemma 1.
Proof of Theorem 1. The Laplace transform of c(t ) is

ĉ(λ) =
∫ ∞

0
e−λt c(t ) dt =

∫ ∞

0
e−λtE[u(S(t ))] dt

= E

∫ ∞

0
e−λt u(S(t )) dt = 1

λ
E[u(S(τ ))],

where τ =d exp(λ) is independent of S [the assumption (14)
and the theorems of Tonelli and Fubini ensure the valid-
ity of exchanging E with the integral]. Therefore, if σ =d

exp(�(λ)), then Lemma 1 implies that

ĉ(λ) = 1

λ
E[u(σ )] = 1

λ

∫ ∞

0
�(λ)e−�(λ)t u(t ) dt

= �(λ)

λ
û(�(λ)), (A4)

which completes the proof. �
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