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Anomalous reaction-diffusion equations for linear reactions
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Deriving evolution equations accounting for both anomalous diffusion and reactions is notoriously difficult,
even in the simplest cases. In contrast to normal diffusion, reaction kinetics cannot be incorporated into evolution
equations modeling subdiffusion by merely adding reaction terms to the equations describing spatial movement.
A series of previous works derived fractional reaction-diffusion equations for the spatiotemporal evolution of
particles undergoing subdiffusion in one space dimension with linear reactions between a finite number of
discrete states. In this paper, we first give a short and elementary proof of these previous results. We then show
how this argument gives the evolution equations for more general cases, including subdiffusion following any
fractional Fokker-Planck equation in an arbitrary d-dimensional spatial domain with time-dependent reactions
between infinitely many discrete states. In contrast to previous works which employed a variety of technical
mathematical methods, our analysis reveals that the evolution equations follow from (1) the probabilistic
independence of the stochastic spatial and discrete processes describing a single particle and (2) the linearity of
the integro-differential operators describing spatial movement. We also apply our results to systems combining
reactions with superdiffusion.
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I. INTRODUCTION

The signature of a normal diffusive process is that the
mean-squared displacement grows linearly in time. That is,
if X (t ) denotes the one-dimensional position of the diffusive
particle at time t � 0, then

E[(X (t ) − X (0))2] ∝ t, (1)

where E denotes expected value. However, the mean-squared
displacement in complex systems often deviates from the lin-
ear behavior in (1) and instead grows as a power law,

E[(X (t ) − X (0))2] ∝ tα, α > 0, (2)

in a phenomenon called anomalous diffusion if α �= 1. Subd-
iffusion is defined by (2) with α < 1 and has been observed
in various systems, including charge transport in amorphous
semiconductors [1], subsurface hydrology [2], and the trans-
port of a bead through a polymer network [3]. In addition,
subdiffusive motion is ubiquitous in cell biology, where it
is believed to result from macromolecular crowding [4,5].
Superdiffusion is defined by (2) with α > 1 and has been ob-
served in animal movement [6] and in active transport inside
cells [7].

Three common mathematical models for subdiffusion are
the continuous-time random walk model, fractional Brownian
motion, and random walks on fractal and disordered systems
[5]. In a continuum limit, the standard continuous-time ran-
dom walk model with independent jump length and waiting
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time distributions yields the fractional diffusion equation [8],

∂

∂t
c(x, t ) = 0D1−α

t Kα

∂2

∂x2
c(x, t ), x ∈ R, t > 0, (3)

for the subdiffusive chemical concentration c(x, t ) at position
x at time t . In (3), the parameter Kα > 0 is the generalized
diffusivity [with dimensions (length)2(time)−α] and 0D1−α

t is
the Riemann-Liouville fractional derivative [9], defined by

0D1−α
t f (t ) = 1

�(α)

d

dt

∫ t

0

f (s)

(t − s)1−α
ds, (4)

where �(α) is the Gamma function. Note that 0D1−α
t is some-

times denoted by ∂1−α

∂t1−α . As a technical aside, the operator
appearing in the derivation of (3) is actually the Grünwald-
Letnikov derivative, but this operator is equivalent to (4) for
sufficiently smooth functions [10].

Generalizing (3), fractional Fokker-Planck equations
model the spatiotemporal evolution of subdiffusive molecules
under the influence of an external force [11]. A fractional
Fokker-Planck equation takes the form

∂

∂t
c(x, t ) = 0D1−α

t Lxc(x, t ), x ∈ V ⊆ Rd , t > 0, (5)

where V ⊆ Rd is a d-dimensional spatial domain and Lx is
the forward Fokker-Planck operator,

Lx f (x) := −
d∑

i=1

∂

∂xi
[μi(x) f (x)]

+ 1

2

d∑
i=1

d∑
k=1

∂2

∂xi∂xk
{[σ (x)σ (x)�]i,k f (x)}, (6)
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where μ(x):V �→ Rd is the external force (drift) vector
and σ (x):V �→ Rd×m describes the space dependence and
anisotropy in the diffusivity. Of course, if α = 1, then 0D1−α

t
is the identity operator and (5) reduces to the familiar equation
of integer order,

∂

∂t
c(x, t ) = Lxc(x, t ). (7)

A fundamental and now longstanding question is how to
model reaction kinetics for subdiffusive molecules (see the
review [12] and Refs. [13–22]). In the classical case of normal
diffusion, reaction terms can simply be added to the evolution
equations describing spatial movement. More precisely, con-
sider the vector of n chemical concentrations,

c(x, t ) = (ci(x, t ))n
i=1 ∈ Rn, (8)

where ci(x, t ) denotes the concentration of species i at posi-
tion x ∈ Rd at time t � 0. In the absence of spatial movement,
suppose the concentrations obey the mean-field reaction equa-
tions

∂

∂t
c = f (c), (9)

where f :Rn �→ Rn. In the case of normal diffusion where each
chemical species moves by (7), one incorporates the reaction
kinetics (9) into spatiotemporal evolution equations by the
simple addition of f (c) to the right-hand side,

∂

∂t
c = Lxc + f (c). (10)

However, this simple procedure fails for subdiffusion. Indeed,
it was shown that the following attempt to combine subdiffu-
sion with degradation at rate λ > 0,

∂

∂t
c = 0D1−α

t Kα

∂2

∂x2
c − λc, x ∈ R, t > 0,

leads to an unphysical negative concentration,
c(x, t ) < 0 [23].

In a series of important works [23–26], evolution equations
were derived for certain subdiffusive processes with linear
reactions. In Ref. [24] the equations were derived for pure
subdiffusion in R with an irreversible reaction between n = 2
chemical species. Equivalent equations were then derived in
Refs. [23,25] using different formalisms. These results were
generalized in Ref. [26] to allow reversible reactions between
any finite number n of chemical species. In particular, in the
case that (1) the reactions in (9) are linear,

f (c) = Rc,

where R ∈ Rn×n is a constant reaction rate matrix, and (2)
each chemical species moves by the one-dimensional frac-
tional diffusion equation in (3), it was found that [26]

∂

∂t
c = KαeRt

0D1−α
t

[
e−Rt ∂2

∂x2
c
]

+ Rc, x ∈ R, (11)

where eRt is the matrix exponential. In contrast to the simple
form in (10) with decoupled reaction and movement terms,
notice that the reactions modify the movement term in (11).
Interestingly, for the case of Lévy flights with an irreversible
reaction between n = 2 species, it was shown in Ref. [25]

that the reaction-superdiffusion equations have the usual de-
coupling of reaction and movement terms. The results in
Refs. [23–26] were derived using continuous-time random
walks and Fourier-Laplace transform theory.

In this paper, we first give a short and elementary proof
of (11). We then show how this argument gives the evolu-
tion equations for more general cases, including subdiffusion
following any fractional Fokker-Planck equation in an ar-
bitrary d-dimensional spatial domain with time-dependent
reactions between infinitely many discrete states. This anal-
ysis reveals that the evolution equations follow from (1)
the probabilistic independence of the stochastic spatial and
discrete processes describing a single particle and (2) the
linearity of the integro-differential operators describing spatial
movement. In addition, under mild assumptions on initial and
boundary conditions, the evolution equations imply that the
spatial and discrete processes are independent. That is, under
some mild conditions, the evolution equations hold if and only
if the spatial and discrete processes are independent.

The rest of the paper is organized as follows. In Sec. II
we give a simple argument that yields (11). In Sec. III we
generalize this argument to yield the evolution equations de-
scribing more complicated spatial and discrete processes. In
Sec. IV we apply this more general result to some examples.
We conclude by discussing our results and highlighting future
directions.

II. SIMPLIFIED SETTING

We first consider a setup that is equivalent to the main
problem considered in Ref. [26]. Assume {J (t )}t�0 is a
continuous-time Markov jump process on the finite state space
{1, . . . , n}. Suppose the matrix R ∈ Rn×n contains the transi-
tion rates, meaning the distribution of J (t ) satisfies the linear
ordinary differential equation,

d

dt
r = Rr, (12)

where r(t ) is the vector of probabilities,

r(t ) = (ri(t ))n
i=1 := {P [J (t ) = i]}n

i=1 ∈ Rn. (13)

Of course, the solution to (12) is the matrix exponential,

r(t ) = eRt r(0), t � 0. (14)

In the language of Markov chain theory, R is the forward
operator and the transpose R� is the backward operator (i.e.,
R� is the infinitesimal generator [27]).

Assume that {X (t )}t�0 is a one-dimensional subdiffusive
process taking values in R. Let q(x, t ) denote the probability
density that X (t ) = x and assume that it satisfies the fractional
diffusion equation,

∂

∂t
q = DtLxq, x ∈ R, t > 0, (15)

where

Dt = 0D1−α
t , α ∈ (0, 1), (16)
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is the fractional derivative of Riemann-Liouville type given in
(4), and

Lx = Kα

∂2

∂x2
(17)

is the one-dimensional Laplacian with generalized diffusivity
Kα > 0. We use the subscripts in (16) and (17) to emphasize
that Dt acts only on the time variable t and Lx acts only on the
space variable x.

Langlands et al. [26] developed a mesoscopic continuous-
time random walk argument to derive the following system of
fractional reaction-diffusion equations,

∂

∂t
p = eRtDt [e

−RtLxp] + Rp, x ∈ R, t > 0, (18)

for the joint density p(x, t ) = (pi(x, t ))n
i=1, where

pi(x, t ) dx = P (X (t ) = x, J (t ) = i).

The derivation in Ref. [26] implicitly assumed that X and J
are independent processes.

We now prove that (18) follows immediately from (12)
and (15), the independence of X and J , and the linearity
of Dt and Lx. Note first that independence ensures that the
joint probability distribution is the product of the individual
distributions,

pi(x, t ) dx = P (X (t ) = x, J (t ) = i)

= P (X (t ) = x)P (J (t ) = i)

= q(x, t )ri(t ) dx.

(19)

Therefore, differentiating p(x, t ) = q(x, t )r(t ) with respect to
time and using (12) and (15) yields

∂

∂t
p(x, t ) = r(t )Dt [Lxq(x, t )] + q(x, t )Rr(t )

= r(t )Dt [Lxq(x, t )] + Rp(x, t ).
(20)

Using (14), the first term in the right-hand side of (20) be-
comes

r(t )Dt [Lxq(x, t )] = eRt r(0)Dt [Lxq(x, t )]

= eRtDt [r(0)Lxq(x, t )]

= eRtDt [e
−Rt r(t )Lxq(x, t )]

= eRtDt [e
−RtLxp(x, t )].

(21)

Combining (20) and (21) yields (18).

III. MORE GENERAL SETTING

It is easy to see that the calculation in (19)–(21) and the
resulting evolution equation in (18) holds in much greater
generality. First, the spatial domain need not be R, and we will
instead take it to be any d-dimensional open set V ⊆ Rd with
d � 1. Second, the operator Lx need not be the Laplacian, and
the operator Dt need not be the Riemann-Liouville fractional
derivative. Instead, we will take Lx to be any linear operator
acting on functions of space x ∈ V ⊆ Rd and Dt to be any
linear operator acting on functions of time t ∈ [0,∞). That
is, if ϕ(t ), ψ (t ) are real-valued functions of time t ∈ [0,∞)

in the domain of Dt and f (x), g(x) are real-valued functions
of space x ∈ V ⊆ Rd in the domain of Lx, then we assume

Lx(ϕ f + ψg) = ϕLx f + ψLxg,

Dt (ϕ f + ψg) = fDtϕ + gDtψ.
(22)

Third, the jump process J (t ) need not have constant jump rates
or a finite state space. We summarize this in the following
theorem. Equation (27) in Theorem 1 and its proof are the
main result of this paper.

Theorem 1. Assume {J (t )}t�0 is a stochastic process on the
possibly infinite, countable state space, {1, 2, . . . , n}, where

n ∈ N ∪ {∞}.
Suppose the distribution,

r(t ) := (ri(t ))n
i=1 := {P [J (t ) = i]}n

i=1 ∈ Rn,

satisfies

d

dt
r(t ) = R(t )r(t ), t > 0, (23)

for some function R(t ):[0,∞) �→ Rn×n, and

r(t ) = 	(t )r(0), t � 0, (24)

where 	(t ):(−∞,∞) �→ Rn×n satisfies

	(t )	(−t ) = id, t ∈ (−∞,∞), (25)

where id is the identity operator.
Assume {X (t )}t�0 is a stochastic process taking values in

the closure of the open set V ⊆ Rd whose probability density,

q(x, t ) dx = P (X (t ) = x),

satisfies
∂

∂t
q = DtLxq, x ∈ V ⊆ Rd , t > 0, (26)

where Lx and Dt are linear operators satisfying (22).
If X and J are independent, then the joint probability den-

sity p(x, t ) = (pi(x, t ))n
i=1,

pi(x, t ) dx = P (X (t ) = x, J (t ) = i),

satisfies
∂

∂t
p = 	(t )Dt [	(−t )Lxp] + R(t )p, x ∈ V, t > 0. (27)

Proof of Theorem 1. Since X and J are independent, the
joint probability density is simply the product,

p(x, t ) = q(x, t )r(t ),

and the proof then follows exactly as in (20) and (21) with
e±Rt replaced by 	(±t ). �

Theorem 1 states that if X and J are independent, then
their joint density p(x, t ) satisfies the evolution equations in
(27). To investigate the converse of Theorem 1, assume that
the joint density p(x, t ) of X and J satisfies the evolution
equations in (27). Now, notice that the product q(x, t )r(t ) also
satisfies (27) if q(x, t ) satisfies (26) and r(t ) satisfies (23).
Therefore, (1) if p(x, t ) and q(x, t )r(t ) satisfy the same initial
conditions and boundary conditions (or growth conditions if
the domain V is unbounded) and if (2) the solution to Eq. (27)
with these initial and boundary conditions is unique, then
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p(x, t ) = q(x, t )r(t ). Therefore, X and J must be independent.
In conclusion, the joint density of X and J satisfies (27) if
and only if X and J are independent, as long as dependencies
between X and J are not imposed at t = 0 or on the spatial
boundary.

IV. EXAMPLES

In this section, we illustrate Theorem 1 by applying it to
some examples of interest.

A. Some previous results

To get the result (11) of Langlands et al. [26], we apply
Theorem 1 with

V = R, Lx = Kα

∂2

∂x2
, Dt = 0D1−α

t , 	(t ) = eRt ,

where R = R(t ) is constant in time and n < ∞.

B. Fractional Fokker-Planck equations

To find the evolution equations for fractional Fokker-
Planck equations with linear reactions, we apply Theorem
1 with Lx given by the Fokker-Planck operator in (6) and
Dt = 0D1−α

t .

C. Other memory kernels

Theorem 1 shows that the form of the evolution equations
in (27) holds for more general operators than the Riemann-
Liouville fractional derivative 0D1−α

t . For example, we can
take the time operator Dt to be the integro-differential oper-
ator [28–30],

Dtϕ(t ) = d

dt

∫ t

0
M(t − t ′)ϕ(t ′) dt ′, (28)

where M(t ):[0,∞) �→ R is the so-called memory kernel.

D. Superdiffusion

Using a continuous-time random walk argument and prop-
erties of Fourier-Laplace transforms, Schmidt et al. [25] found
that the reaction and movement terms are decoupled in the
reaction-superdiffusion equations for Lévy flights with a sin-
gle irreversible reaction. In this case, the equation describing
the movement (without reaction) of a single molecule is

∂

∂t
q = Kμ
μ/2

x q,

where 
μ/2
x is the Riesz symmetric fractional derivative acting

on x. Therefore, the decoupling of reaction and movement
terms in the reaction-superdiffusion equations follows from
Theorem 1 upon taking the spatial operator to be Lx =
Kμ
μ/2

x and the time operator Dt to be the identity.

E. Time-dependent rates

Theorem 1 allows the reaction rate matrix to vary in time.
In particular, suppose that the reaction rate matrix is some
given function of time {R(t )}t�0 (which does not depend on
spatial position). Starting from the result of Langlands et al.

(11) for constant reaction rates, one might conjecture that the
evolution equations for such time-dependent reaction rates are

∂

∂t
p = e

∫ t
0 R(s) dsDt

[
e− ∫ t

0 R(s) dsLxp
] + R(t )p, (29)

where the integration
∫ t

0 R(s) ds is performed componentwise.
Indeed, (29) has been used to model some physical systems
involving a single irreversible reaction with a time-dependent
rate [31,32]. However, Theorem 1 shows that the conjecture
in (29) can fail, since the solution operator 	(±t ) in (24)
for Eq. (23) is not always given by the matrix exponential
e± ∫ t

0 R(s) ds.
In fact, the two-state irreversible reaction,

1
λ(t )→ 2, (30)

is a rare case of time-dependent reaction rates for which (29)
holds, since this is one of the few instances of time-dependent
reaction rates in which 	(±t ) = e± ∫ t

0 R(s) ds (see Appendix
A.2.4 in Ref. [33]). To illustrate, suppose J (t ) ∈ {1, 2} models
(30) for some reaction rate λ(t ), and thus assume that the dis-
tribution r(t ) ∈ R2 satisfies the nonautonomous linear system
of ordinary differential equations in (23) with time-dependent
reaction rate matrix,

R(t ) =
(−λ(t ) 0

λ(t ) 0

)
∈ R2×2.

In this case, one can check that the solution operator in (24) is
indeed the matrix exponential,

	(t ) = e
∫ t

0 R(s) ds =
(

e− ∫ t
0 λ(s) ds 0

1 − e− ∫ t
0 λ(s) ds 1

)
, for t � 0,

and 	(−t ) = e− ∫ t
0 R(s) ds for t > 0.

However, if the reaction scheme is more complicated than
(30) and the reaction rates depend on time, then typically
	(±t ) �= e± ∫ t

0 R(s) ds, and thus Theorem 1 shows that (27)
holds rather than (29). For example, suppose (30) is now
reversible,

1
λ1(t )
�
λ2(t )

2,

and thus r(t ) ∈ R2 satisfies (23) with

R(t ) =
(−λ1(t ) λ2(t )

λ1(t ) −λ2(t )

)
∈ R2×2.

In this case, it is straightforward to check that the solution
operator is

	(t ) =
(

	11(t ) 1 − 	22(t )
1 − 	11(t ) 	22(t )

)
, t � 0, (31)

where for i ∈ {1, 2} and t � 0,

	ii(t ) = e− ∫ t
0 [λ1(s)+λ2(s)] ds

×
(

1 +
∫ t

0
λ1−i(s)e

∫ s
0 [λ1(σ )+λ2(σ )] dσ ds

)
.

Also, the condition (25) implies that the operator evaluated at
a negative time argument is the matrix inverse

	(−t ) = (	(t ))−1, for t > 0.
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Note that matrix 	(t ) is invertible for each t � 0 since it is
triangular and the diagonal entries are nonzero. The matrix
exponential in this case is

e
∫ t

0 R(s) ds =
(

1 − χ21(t ) χ12(t )
χ21(t ) 1 − χ12(t )

)
, t � 0, (32)

where

χi j (t ) =
∫ t

0 λ j (s) ds
(
1 − e− ∫ t

0 [λ1(s)+λ2(s)] ds
)

∫ t
0 λ1(s) ds + ∫ t

0 λ2(s) ds
.

It is straightforward to check that (31) and (32) are generally
not equal, except in special cases [such as constant rates,
λ j (t ) ≡ λ j > 0, or equal rates, λ1(t ) = λ2(t ) for all t � 0].

Furthermore, it is not merely the presence of a reversible
reaction that can cause (29) to fail. For example, suppose
J (t ) ∈ {1, 2, 3} has two irreversible reactions,

1
λ1(t )→ 2

λ2(t )→ 3,

and its distribution r(t ) ∈ R3 satisfies (23) with

R(t ) =
⎛
⎝−λ1(t ) 0 0

λ1(t ) −λ2(t ) 0
0 λ2(t ) 0

⎞
⎠ ∈ R3×3.

The corresponding solution operator for t � 0 is then

	(t ) =

⎛
⎜⎝

e− ∫ t
0 λ1(s) ds 0 0

	21(t ) e− ∫ t
0 λ2(s) ds 0

1 − e− ∫ t
0 λ1(s) ds − 	21(t ) 1 − e− ∫ t

0 λ2(s) ds 1

⎞
⎟⎠,

where

	21(t ) = e− ∫ t
0 λ2(s) ds

∫ t

0
λ1(s)e

∫ s
0 [λ2(σ )−λ1(σ )] dσ ds.

For this example, one can check that

	(t ) �= e
∫ t

0 R(s) ds, if t > 0,

except for special cases, and thus (29) is invalid.
Summarizing, except for a single irreversible reaction, the

evolution equation (29) is typically false for time dependent
rates and is corrected by (27) in Theorem 1.

V. DISCUSSION

We have given a short and elementary proof of the evo-
lution equations for a general class of systems which can
combine anomalous motion with linear reaction kinetics. Our
results generalize some previous results in Refs. [23–26]. The
derivations of these previous results employed a variety of

mathematical techniques, including continuous-time random
walk theory, Fourier and Laplace transforms, Tauberian the-
orems, and asymptotic expansions. In light of these previous
derivations, one might conclude that the form of the evolution
equations depends on these finer details. However, we have
shown that the evolution equations follow directly from (1) the
independence of the stochastic spatial and discrete processes
describing a single particle and (2) the linearity of the integro-
differential operators describing particle motion.

Of course, in the present work and in the previous work
[23–26], the evolution equations are not strictly necessary in
the sense that the solution to the equations is merely the prod-
uct of the distributions of the spatial and discrete processes.
Nevertheless, these results are expected to be useful for de-
veloping models where the independence assumption breaks
down. Indeed, evolution equations of a very similar form to
(27) have been derived in Refs. [34,35] for pure subdiffusion
with certain space-dependent reaction rates. Furthermore, we
agree with Refs. [23,26] that these results could provide a
platform for investigating nonlinear reactions, such as those
stemming from mass-action kinetics.

For example, a natural starting place is an irreversible bi-
molecular reaction of the form [36]

A + A → ∅,

which describes particles that can annihilate each other. How-
ever, while the general form of the evolution equations in (27)
may be instructive for this nonlinear example, it is clear that
the approach of the present work cannot be applied directly.
Indeed, the present work relied on the independence of the
spatial position and discrete state of a single particle. How-
ever, it is clear for this example that a single particle is more
likely to be in the discrete “annihilated” state if it is in a
region of space containing a high concentration of particles.
Similarly, if we consider a unimolecular reaction of the form

A
λ(x)→ ∅,

where the first-order rate λ(x) > 0 depends on the spatial
position x of the particle, it is clear that the particle is more
likely to be in the “annihilated” state if it is in a region of
space where λ(x) is large.
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