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Boundary homogenization for trapping patchy particles
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Many systems in chemical and biological physics involve diffusing particles being trapped by absorbing
patches on otherwise reflecting surfaces. Such systems are commonly studied by boundary homogenization, in
which the heterogenous boundary condition on the patchy surface is replaced by a uniform boundary condition
involving a single parameter which encapsulates the effective trapping properties of the surface. In prior works
on boundary homogenization, the surface is patchy and the diffusing particles are homogeneous. In this paper,
we consider the opposite scenario in which a homogenous surface traps patchy particles, which could model
proteins with localized binding sites, cells with membrane receptors, or patchy colloids or nanoparticles. We
derive an explicit formula for the effective trapping rate which reveals a fundamental interplay between the
translational and rotational diffusivities of the patchy particle, a phenomenon not typically seen in boundary
homogenization. Motivated by receptors on the cell membrane, our analysis also allows for the possibility that
the patches diffuse on the surface of the particle. We formulate the system in terms of a high-dimensional,
time-dependent, anisotropic diffusion equation and employ matched asymptotic analysis to derive the effective
trapping rate. We confirm our results by detailed numerical simulations.
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I. INTRODUCTION

Many systems in chemical and biological physics involve
diffusing particles binding to heterogeneous or “patchy” sur-
faces. Examples include chemicals binding to receptors on
a cell membrane [1], reactions on porous catalyst support
structures [2], diffusion current to collections of microelec-
trodes [3], and water transpiration through plant stomata [4,5].
Such patchy surfaces are often modeled as reflecting surfaces
covered by absorbing patches or traps, see Fig. 1(a).

In such a model, it is common to replace the heterogeneous
surface by a homogenized surface involving a single “trapping
rate” κ > 0 which encapsulates the effective reactivity or
permeability of the original heterogeneous surface. Indeed,
many works have derived formulas for such trapping rates
which depend on various characteristics of the patchy surface,
such as the fraction of the surface covered in traps, the sizes
and shapes of traps, the arrangement of traps, etc. [6–14].

The idea behind homogenizing patchy surfaces is that, due
to particle diffusion in the directions parallel to the surface,
the surface heterogeneity only affects the diffusing particle
concentration near the surface. In particular, the concentration
is constant in directions parallel to the surface outside a
boundary layer, where the width of this layer depends on the
length scale of the surface heterogeneity.

Hence, if one is interested in the concentration outside this
layer, then the particle concentration, c(x, t ), at time t depends
only on the one-dimensional distance x > 0 from the surface.
In this framework, the surface heterogeneity is approximated
by an effective trapping rate κ > 0 used in a homogenized
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boundary condition at the surface,

Dtr
∂

∂x
c = κc, x = 0, (1)

where Dtr is the translational diffusivity of the particles.
Notice that small (large) values of κ correspond to a surface
that is mostly reflecting (absorbing).

In prior works on boundary homogenization, the trapping
surface is patchy and the diffusing particles are assumed to be
homogeneous [6–14]. In this paper, we consider the opposite
scenario in which patchy particles bind to a homogenous
surface, see Fig. 1(b). In this case, the patchy particle could
represent a protein [15], a patchy colloid or nanoparticle
[16,17], or a cell [1]. Indeed, the ability of cells to bind to
surfaces through adhesion molecules on their membranes is
critical to many physiological processes and is also used in
biotechnology [18].

In our model, a patchy particle binds to the surface when
one of its patches makes contact with the surface; otherwise,
the particle reflects from the surface. That is, binding requires
a certain particle orientation on contact with the surface. For
this model, we derive an explicit formula for the effective
trapping rate κ .

To briefly summarize our results, consider a diffusing
spherical particle (macromolecule) of radius R. Suppose the
particle is covered by N � 1 locally circular patches of radius
a � R which are approximately evenly distributed. The parti-
cle’s distance from the surface is governed by its translational
diffusivity, Dtr , and its orientation is governed by its rotational
diffusivity, Drot. Motivated by receptors which diffuse on the
cell membrane [18], we also allow for the possibility that the
patches diffuse on the surface of the particle with diffusivity
Dpat � 0 [see Fig. 1(b)]. We show that the particle binding
(i.e., trapping) at the surface is well approximated by the
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FIG. 1. (a) A homogeneous particle and a patchy surface. The
particle binds to the surface if it touches one of the red patches on
the surface. (b) A patchy particle and a homogeneous surface. The
particle binds to the surface if one of its patches touches the surface.
In both (a) and (b), the particle has translational diffusivity Dtr . In (b),
the particle’s rotational diffusivity Drot plays a crucial role in binding.
Further, the patches in (b) diffuse on the surface of the particle with
diffusivity Dpat .

boundary condition (1) with trapping rate

κ = Na

πR2

√
Dtr (R2Drot + Dpat ). (2)

The rest of the paper is organized as follows. In Sec. II,
we formulate our model and derive a high-dimensional, time-
dependent, anisotropic diffusion equation describing the sys-
tem. We then apply matched asymptotic analysis to this partial
differential equation (PDE) in Sec. III to obtain the trapping
rate in (2). In Sec. IV, we verify our results by numerical
simulations. In Sec. V, we discuss the parameter regimes
and geometries in which boundary homogenization with the
trapping rate in (2) is valid. We conclude by discussing
relations to prior work.

II. MODEL FORMULATION

Consider a spherical particle (macromolecule) with radius
R > 0 in a one-dimensional slab of either finite or infinite
width L + 2R, where 0 < L � ∞. Suppose the particle dif-
fuses with both translational diffusivity and rotational diffu-
sivity, see Fig. 1(b). Suppose the particle reflects from the
right wall of the slab (if L < ∞). Furthermore, suppose the
particle either reflects or is absorbed at the left wall of the slab,
depending on the orientation of the particle and its surface
patches when it makes contact with the wall. In particular, the
particle is absorbed when one of its patches touches the left
wall.

To analyze this system, we center our reference frame on
the particle and allow the reference frame to rotate with the
particle’s rotational diffusion, see Fig. 2. It follows that the
point on the left wall that is closest to the particle diffuses in
the annulus,

{x ∈ R3 : R � |x| � L + R}.
We denote the position of this point at time t � 0 in the
spherical coordinates,

(X (t ),�0(t ),�0(t )) ∈ [R, L + R] × [0, π ) × [0, 2π ). (3)

Drot

(a)
Dtr

(b)

Dtr

R2Drot

FIG. 2. (a) Particle diffusing in a one-dimensional slab. The
particle orientation is governed by Drot and its horizontal motion is
governed by Dtr (motion in other directions is irrelevant). The blue
ball depicts the closest point on the left wall of the slab. (b) Centering
the reference frame on the particle and letting the reference frame
rotate with the particle, it follows that the blue ball diffuses in an
annulus about the particle. The angular diffusion of the blue ball
is governed by Drot and its distance from the particle is governed
by Dtr . In both (a) and (b), the patches diffuse on the particle with
diffusivity Dpat .

If we denote the translational and rotational diffusivities of
the particle by Dtr > 0 and Drot � 0, then it follows that
the stochastic process in (3) satisfies the following stochastic
differential equations (SDEs):

dX (t ) =
√

2Dtr dWX (t ),

d�0(t ) = Drot

tan[�0(t )]
dt +

√
2Drot dW�0 (t ),

d�0(t ) =
√

2Drot

sin[�0(t )]
dW�0 (t ),

(4)

where WX , W�0 , and W�0 are independent standard Brownian
variables. Notice that the diffusion of X (t ) is governed by Dtr ,
while the diffusion of (�0(t ),�0(t )) is governed by Drot (see
Fig. 2).

We suppose that the particle carries N � 1 patches on
its surface, which diffuse independently on the surface with
diffusivity Dpat � 0. We assume

R2Drot + Dpat > 0.

(We discuss the trivial case R2Drot + Dpat = 0 in Sec. V B.)
To describe the patches, define the spherical cap

�(p, ε) := {(R, θ, ϕ) : (θ − θp)2 + sin2(θp)(ϕ − ϕp)2 � ε2},
centered at a point p with spherical coordinates

p = (R, θp, ϕp) ∈ {R} × [0, π ) × [0, 2π ).

Notice that ε > 0 is the angle between (a) the ray from the
center of the particle to the apex of the cap and (b) the ray
from the center of the particle to the edge of the base of the
cap.

The N patches are then the spherical caps
{�(Pn(t ), εbn)}N

n=1, where

Pn(t ) = (R,�n(t ),�n(t )), n ∈ {1, . . . , N}, (5)

is the center of the nth patch at time t � 0. Here we have
introduced the constants {bn}N

n=1 with bn = O(1) to allow the

032601-2



BOUNDARY HOMOGENIZATION FOR TRAPPING PATCHY PARTICLES PHYSICAL REVIEW E 100, 032601 (2019)

patches to have different sizes. Since the surface area of the
nth patch is

π (εbnR)2 + O(ε3) for ε � 1,

we refer to εbnR as the radius of the nth patch.
Since we allow the patches to diffuse independently on the

surface of the particle, it follows that the spherical coordinates
of the center of the nth patch in (5) follow the SDEs,

d�n(t ) = Dpat

R2 tan[�n(t )]
dt +

√
2Dpat

R
dW�n (t ),

d�n(t ) =
√

2Dpat

R sin[�n(t )]
dW�n (t ), n ∈ {1, . . . , N},

(6)

where {W�n}N
n=1 and {W�n}N

n=1 are independent standard
Brownian variables. Note that we have assumed in (6) that
the patches are noninteracting, and thus they could overlap
and diffuse through each other. Note also that patch diffu-
sion (Dpat > 0) ensures that the patches become uniformly
distributed as time increases, regardless of their initial ar-
rangement. If Dpat = 0, then we assume that the patches are
approximately evenly distributed.

To summarize, if we define the sets

� := (R, L + R) × �N+1
0 , �0 := [0, π ) × [0, 2π ),

then the state of the entire system at time t � 0 lies in the
closure of �,

(X (t ),�(t ),�(t )) ∈ �, (7)

where �(t ) and �(t ) denote the vectors,

�(t ) = (�0(t ),�1(t ), . . . , �N (t )) ∈ [0, π )N+1,

�(t ) = (�0(t ),�1(t ), . . . , �N (t )) ∈ [0, 2π )N+1.

We analyze the so-called survival probability of this system,
which is the probability that the particle has not become bound
by time t � 0.

To describe the survival probability, let τ � 0 be the first
time that the particle binds to the left wall,

τ := inf

{
t � 0 : (X (t ),�0(t ),�0(t )) ∈

N⋃
n=1

�(Pn(t ), εbn)

}
.

(8)

The survival probability is then the probability that the particle
has not become bound before time t � 0,

S(x, θ, ϕ, t ) := P (τ > t | X (0) = x,�(0) = θ,�(0) = ϕ),
(9)

where θ and ϕ denote the vectors

θ = (θ0, θ1, . . . , θN ) ∈ [0, π )N+1,

ϕ = (ϕ0, ϕ1, . . . , ϕN ) ∈ [0, 2π )N+1. (10)

We emphasize that the survival probability (9) is conditioned
on the initial state X (0) = x, �(0) = θ , �(0) = ϕ. Through-
out the paper, we use the capital letters (X,�,�) to denote
the time-dependent values of the stochastic process in (7), and
we use the lowercase letters (x, θ, ϕ) to denote the arguments
of the survival probability S(x, θ, ϕ, t ) [which are initial con-
ditions of the stochastic process in (7)].

The survival probability satisfies the backward Kol-
mogorov equation [19] (or backward Fokker-Planck equation
[20]), which in this case is

∂t S = LS, (x, θ, ϕ) ∈ �, t > 0, (11)

where

L := Dtr∂xx + DrotL0 + R−2Dpat

N∑
n=1

Ln,

and Ln is the Laplace-Beltrami operator acting on the nth
angular coordinates (θn, ϕn) for n ∈ {0, 1, . . . , N},

Ln := [sin(θn)]−2∂ϕnϕn + cot(θn)∂θn + ∂θnθn .

We emphasize that the diffusion operators in (11) act
anisotropically. In particular, the operator ∂xx + L0 is not the
Laplacian in spherical coordinates (x, θ0, ϕ0) (see Fig. 2).

To complete the boundary value problem satisfied by S,
first note that S satisfies the following initial condition by
definition:

S = 1, (x, θ, ϕ) ∈ �, t = 0. (12)

Next, since the particle reflects from the right wall of the slab
in the case L < ∞, we obtain a no-flux boundary condition at
x = L + R,

∂xS = 0, x = L + R, (θ, ϕ) ∈ �N+1
0 , t > 0. (13)

That is, (13) holds when x = L + R, regardless of the value of
the angles (θ, ϕ) in (10). In the case L = ∞, (13) is replaced
by

lim
x→∞ S = 1, (θ, ϕ) ∈ �N+1

0 , t > 0, (14)

since the probability that the particle reaches the left wall in
any fixed finite time t > 0 vanishes in the limit that the particle
starts infinitely far from the left wall.

If one of the patches on the particle touches the left wall,
then it is immediately absorbed. Otherwise, the particle re-
flects from the left wall. Hence, we obtain the mixed boundary
conditions at x = R,

S = 0, x = R, (θ0, ϕ0) ∈ ∪N
n=1�(pn, εbn),

∂xS = 0, x = R, (θ0, ϕ0) /∈ ∪N
n=1�(pn, εbn),

(15)

where pn denotes the initial center of the nth patch,

pn := (R, θn, ϕn).

In words, the first boundary condition in (15) means that if
the particle is initially placed at the left wall (x = R) and
one of the patches is initially aligned so that it touches the
wall [(θ0, ϕ0) ∈ ∪N

n=1�(pn, εbn)], then the particle immedi-
ately binds, and so S = 0.

In the limit that the patches are small (ε � 1), we
show below that the solution S(x, θ, ϕ, t ) to this (2N + 3)-
dimensional problem is well approximated by the solution
S(x, t ) of the following one-dimensional problem,

∂t S = Dtr∂xxS, x ∈ (R, L + R), t � 0, (16)

with initial condition S = 1 and boundary condition,

Dtr∂xS = κS, x = R, (17)
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where κ > 0 is the effective trapping rate we derive below.
Naturally, S satisfies either (13) or (14), depending if L < ∞
or L = ∞.

III. MATHEMATICAL ANALYSIS

A. Matched asymptotic analysis

Since the particle becomes perfectly reflecting as ε → 0, it
is immediate that

lim
ε→0

S(x, θ, ϕ, t ) = 1, (18)

for each (x, θ, ϕ) ∈ � and t � 0. To obtain more information
about the behavior of S as ε → 0, we employ matched asymp-
totic analysis, adapting the approach of Refs. [12,21] (see also
Refs. [22–29]). In particular, we expect that S has a boundary
layer in a neighborhood of each of the patches. Hence, we
introduce the outer expansion which is valid away from the
patches,

S ∼ 1 + εS1 + · · · , (19)

for some function S1(x, θ, ϕ, t ).
Plugging the outer expansion (19) into (11)–(15) implies

that S1 satisfies

∂t S1 = LS1, (x, θ, ϕ) ∈ �, t > 0,

∂xS1 = 0, x = R, (θ0, ϕ0) /∈ ∪N
n=1{(θn, ϕn)}. (20)

Notice that from the perspective of the outer solution, the
patches have become points. The analysis below yields the
singular behavior of S1 as (x, θ0, ϕ0) → (R, θn, ϕn).

In the inner region near the nth patch, we introduce the
local coordinates (η, s1, s2) defined by

η = ε−1(x/R − 1),

s1 = ε−1β−1 sin(θn)(ϕ0 − ϕn),

s2 = ε−1β−1(θ0 − θn),

where β is the dimensionless constant,

β :=
√

R2Drot + Dpat

Dtr
> 0. (21)

We then define the inner solution w as a function of local
coordinates,

w(η, s1, s2, θ
′, ϕ′, t )

:= S1(R + εRη, ϕn + εβ(sin θn)−1s1, θn + εβs2, θ
′, ϕ′, t ),

where (θ ′, ϕ′) = (θ1, ϕ1, . . . , θN , ϕN ).
By our choice of β in (21), a quick calculation shows

that the differential operator L in (11) expressed in local
coordinates is

L = ε−2R−2Dtr
(
∂ηη + ∂s1s1 + ∂s2s2

) + O(ε−1).

Therefore, plugging the inner expansion

w = w0 + εw1 + · · ·
into (11) implies that w0 is constant in time and harmonic in
upper half-space,(

∂ηη + ∂s1s1 + ∂s2s2

)
w0 = 0, η > 0, s1 ∈ R, s2 ∈ R.

Furthermore, (15) implies that w0 satisfies the following
boundary conditions on the η = 0 plane:

∂ηw0 = 0, on η = 0, s2
1 + s2

2 � (bn/β )2,

w0 = 0, on η = 0, s2
1 + s2

2 � (bn/β )2.

This problem for w0 can be solved explicitly using the solu-
tion to the so-called electrified disk problem from electrostat-
ics [30], derived by Weber [31] in 1873. From this explicit
solution, it follows that w0 has the far-field behavior,

w0 ∼ A

(
1 − 2bn

πβρ

)
, as ρ :=

√
η2 + s2

1 + s2
2 → ∞,

(22)

where A is a constant to be determined by matching to the
outer solution.

The matching condition is that the near-field behavior of
the outer expansion as (x, θ0, ϕ0) → (R, θn, ϕn) must agree
with the far-field behavior of the inner expansion as ρ → ∞.
That is,

1 + εS1 + · · · ∼ w0 + εw1 + · · · ,

as (x, θ0, ϕ0) → (R, θn, ϕn), ρ → ∞. (23)

Plugging (22) into (23) implies that A = 1 and that S1 has the
following singular behavior as (x, θ0, ϕ0) → (R, θn, ϕn):

S1 ∼ −2bn/π√
β2

(
x
R − 1

)2 + sin2(θn)(ϕ0 − ϕn)2 + (θ0 − θn)2
.

Writing this singular behavior in distributional form (see
Refs. [21,32]), the boundary condition in (20) becomes

∂xS1 = 4β

R

N∑
n=1

bnδ(θ0 − θn)

sin(θn)
δ(ϕ0 − ϕn), x = R. (24)

B. Effective trapping rate κ

To derive a one-dimensional approximation to S(x, θ, ϕ, t ),
we average over the orientations (θ, ϕ),

S(x, t ) := 1

(4π )N+1

∫
�N+1

0

S(x, θ, ϕ, t ) d�, (25)

where d� := ∏N
n=0 sin θn dθn dϕn. Note that S(x, t ) is the sur-

vival probability conditioned that X (0) = x and (�(0),�(0))
is uniformly distributed on �N+1

0 . It follows directly from the
boundary value problem satisfied by S in (11)–(15) that S must
satisfy

∂t S = Dtr∂xxS, x ∈ (R, L + R), t > 0,

with the initial condition S = 1. Further, S satisfies either (13)
or (14), depending on whether L < ∞ or L = ∞.

Next, we want to derive an effective Robin boundary
condition that S satisfies at x = R. To find this condition, we
first define κ (t ) to be the ratio

κ (t ) := Dtr∂xS(R, t )

S(R, t )
> 0, (26)
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so that it is a tautology that S satisfies the Robin boundary
condition at x = R,

Dtr∂xS = κ (t )S, x = R.

We then use the definition of κ (t ) in (26) to derive an explicit,
time-independent formula for κ (t ) as ε → 0.

In particular, by (26) and the definition of S in (25), we
have

κ (t ) =
Dtr∂x

∫
�N+1

0
S(R, θ, ϕ, t ) d�∫

�N+1
0

S(R, θ, ϕ, t ) d�
. (27)

Now (18) implies that the integral in the denominator in (27)
converges to (4π )N+1 as ε → 0. Further, interchanging the
derivative with the integral in the numerator in (27) and using
the outer expansion in (19) yields

κ (t ) ∼
εDtr

∫
�N+1

0
∂xS1(R, θ, ϕ, t ) d�

(4π )N+1
, as ε → 0. (28)

Next, the boundary condition (24) simplifies (28) to

κ (t ) ∼ εβDtr

πR

N∑
n=1

bn, as ε → 0.

Finally, if we define the average,

b := 1

N

N∑
n=1

bn,

then on using the definition of β in (21), we find that the
trapping rate is independent of time and is given by

κ (t ) ∼ κ := εNb

πR

√
Dtr (R2Drot + Dpat ), as ε → 0. (29)

If the patches have a common radius a = εR (and thus bn =
b = 1), then (29) reduces to (2).

IV. NUMERICAL SIMULATION

A. Stochastic simulation algorithm

In this section, we perform numerical simulations to inves-
tigate the accuracy of our trapping rate in (29). Before giving
the results of these simulations in the subsections below, we
first describe our stochastic simulation algorithm.

We simulate the (2N + 3)-dimensional stochastic process
(X (t ),�(t ),�(t )) in (7). This entails simulating the three
SDEs in (4) and the 2N SDEs in (6). Further, this includes
simulating the reflection of X (t ) at x = L + R (the right wall
of the slab) and either the reflection or absorption of X (t )
at x = R (the trapping surface), depending on the orientation
of the 2(N + 1) angles (�(t ),�(t )) ∈ �N+1

0 when X (t ) hits
x = R.

We simulate these SDEs using the Euler-Maruyama
method [33]. To increase computational efficiency, we
use either a large time step (denoted �tbig) or a small
time step (denoted �tsmall), depending on the distance be-
tween (X (t ),�0(t ),�0(t )) and the nearest absorbing patch
(R,�n(t ),�n(t )). Unless otherwise noted, we take �tbig =
10−5 and �tsmall = 10−8. Our numerical method is similar to
the method used in Ref. [21].

In all simulations, we take Dtr = R = 1, L = 4, and
X (0) = 2. We also take bn = 1 for all n ∈ {1, . . . , N} so that
all the patches have the same size. We take the initial particle
orientation (�0(0),�0(0)) to be uniformly distributed. Fur-
ther, we initially place the N patches, {(�n(0),�n(0))}N

n=1, on
the particle according to the Fibonacci lattice [13], which is
merely a simple way to homogeneously distribute points on a
sphere.

We use this numerical algorithm to generate many in-
dependent realizations of the binding time τ in (8). From
this numerical data, we then compute an empirical survival
probability Semp(t ). Specifically, if

0 < τ1 � τ2 � · · · � τM−1 � τM < ∞
denote M independent realizations of the binding time gener-
ated from the numerical algorithm, then the empirical survival
probability is defined by Semp(0) = 1,

Semp(τm) = 1 − m

M
, m ∈ {1, . . . , M},

and Semp(t ) = 0 for t � τm, with linear interpolation at all
other times. For a large number of realizations (M 
 1)
and small discrete time steps (�tbig � 1 and �tsmall � 1), it
follows that Semp(t ) approximates the survival probability in
(9) for the initial conditions (X (0),�(0),�(0)) described in
the previous paragraph.

In the following subsections, we compare Semp to the
survival probability S obtained from the one-dimensional PDE
[(16) and (17)] where κ is given by (29). This one-dimensional
PDE can be solved either analytically in terms of an explicit
infinite series or numerically with standard software. We solve
it using a numerical PDE solver in Matlab called pdepe [34].

B. Match full distribution

In Fig. 3, we plot Semp and S and find very close agree-
ment. In this plot, we set Drot = 0, vary Dpat, and take N =
50 patches of radius ε = 10−2. To quantify the agreement
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FIG. 3. Curves are the survival probability S using κ in (29), and
the markers are the empirical survival probability Semp computed
from Monte Carlo simulations of the full stochastic process in (7).
Here ε = 10−2, N = 50, Drot = 0, and M = 4 × 103 trials for each
value of Dpat ∈ {0.5, 1, 2}.

032601-5



SEAN D. LAWLEY PHYSICAL REVIEW E 100, 032601 (2019)

10−2 10−1.5 10−1
0

0.05

0.1

0.15

ε = dimensionless patch radius

E
=

E
rr

or
in

d
is

tr
ib

u
ti

on

Drot = 0.5
Drot = 1
Drot = 2

FIG. 4. The error in distribution E in (30) as a function of
ε for different values of the rotational diffusivity Drot . Here
N = 50, Dpat = 0, and M = 104 trials for each value of ε ∈
{10−2, 10−1.5, 0.5, 0.1, 0.2} and Drot ∈ {0.5, 1, 2}.

between Semp and S, we define the error in distribution,

E := sup
t�0

|Semp(t ) − S(t )| � 0, (30)

which is the so-called Kolmogorov-Smirnov distance [35].
For the three sets of parameters in Fig. 3, the error is at most
E = 0.015.

In Fig. 4, we plot the error in distribution E in (30) as a
function of the patch radius ε for different values of Drot. From
this plot, we see that E decreases from about E ≈ 0.1 when
ε = 0.2 to about E ≈ 0.015 when ε = 10−2.

These results confirm the analysis of Sec. III that using
the effective trapping rate κ in (29) in the homogenized
one-dimensional PDE [(16) and (17)] closely approximates
the (2N + 3)-dimensional, anisotropic PDE in (11)–(15). In
particular, the effective trapping rate κ allows us to capture the
full probability distribution of the binding time τ in (8) (rather
than just the mean of τ , for example). Hence, we emphasize
that the trapping rate κ can be used in both steady-state and
time-dependent problems (like the one above).

C. Optimal trapping rate

In the subsection above, we computed the error in distri-
bution E in (30) between the empirical survival probability
Semp and the survival probability S obtained from solving
the homogenized one-dimensional PDE [(16) and (17)] with
trapping rate κ in (29). We now determine how our theoretical
trapping rate κ in (29) compares to a numerically computed
optimal trapping rate κopt.

That is, for a given empirical survival probability Semp

calculated from many Monte Carlo trials, we first compute the
error in distribution E between Semp and S for a broad range
of trapping rates κ . We then define κopt to be the trapping rate
that minimizes the error E .

To illustrate, the black curve in Fig. 5(a) gives the error
E between Semp and S for trapping rate κ ranging from 0.05
to 0.3. We emphasize that this curve is generated merely
by plugging in a range of numerical values for κ into the
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FIG. 5. Comparing the theoretical trapping rate in (29) and a
numerically computed optimal trapping rate. (a) The black curve
gives the error E in (30) between Semp and S for trapping rates
κ ranging from 0.05 to 0.3. The dashed red curve is the error E
when the theoretical trapping rate in (29) is used. We take ε = 10−2,
N = 50, Drot = 1, Dpat = 0, and M = 104 trials. (b) The error in κ in
(31) as a function of ε for different values of Drot . The parameters are
as in Fig. 4.

one-dimensional PDE [(16) and (17)] and calculating the error
E . This curve has a sharp minimum at κopt ≈ 0.17. For the
parameter values in this plot (see the figure caption), our
theoretical trapping rate in (29) is κ ≈ 0.16. We thus define
the “error in κ” to be

Eκ := |κopt − κ|
κopt

, (31)

which in the case of Fig. 5(a) is about Eκ ≈ 0.039.
In Fig. 5(b), we plot Eκ in (31) as a function of ε for

different values of Drot. Importantly, this figure shows a linear
decay of Eκ which validates that our theoretical trapping rate
in (29) does indeed capture the leading-order behavior of the
optimal trapping rate as ε → 0. Furthermore, the linear decay
in Fig. 5(b) further suggests that the next order correction
to the trapping rate is O(ε2), which is consistent with some
boundary homogenization results on other problems [8,9,12].

V. RANGE OF VALIDITY

In this section, we discuss the parameter regimes and ge-
ometries in which boundary homogenization with the trapping
rate κ in (29) is valid.
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A. Parameter regimes

Recall that we derived the trapping rate in (29) in the
limit ε = a/R → 0. That is, if we fix the values of the other
parameters (N , Dtr , Drot, Dpat, etc.), then the trapping rate
is valid for sufficiently small ε. Of course, the value of ε

that is “sufficiently small” depends on the values of the other
parameters (as well as what error tolerance is acceptable in
order for the homogenization to be considered valid).

To estimate how the accuracy depends on the various
parameters, first note that the asymptotic argument in Sec. III
requires the patches to be well separated. More precisely, if
N patches are approximately evenly distributed on a sphere
of radius R, and l0 is half the average distance between the
centers of nearest-neighbor patches, then we have for large N

Nπ l2
0 ≈ 4πR2.

Hence, requiring the patches to be well separated means

a � l0 ≈ 2R/
√

N . (32)

Note that squaring (32) implies that the fraction of the par-
ticle’s surface covered by patches is small, Na2/(4R2) � 1,
which is commonly assumed in asymptotic analysis of spheres
covered by absorbing patches [12].

Furthermore, the analysis in Sec. III used the fact that
the particle becomes perfectly reflecting in the limit ε →
0. In terms of the homogenized boundary condition (17),
the particle becomes perfectly reflecting when the following
dimensionless trapping rate is small,

κ := κR

Dtr
= εβN

π
� 1. (33)

Hence, putting (32) and (33) together yields the following suf-
ficient condition to ensure high accuracy of homogenization
with κ in (29):

ε � min

{
π

βN
,

2√
N

}
. (34)

Of course, for any fixed patch size ε > 0, the condition
in (34) can be violated by taking N → ∞ and/or β → ∞.
Hence, the asymptotic argument that yielded the trapping rate
κ in (29) fails in either one of these limits. However, it turns
out that homogenization with the trapping rate κ in (29) is
valid in these limits.

To see this, first note that the particle becomes perfectly
absorbing as N → ∞, since the particle is completely covered
in patches in this limit. Since the trapping rate in (29) is linear
in N , it produces this desired large N behavior. Similarly,
the particle becomes perfectly absorbing as β → ∞, since
the patches exhaustively explore their orientations before the
particle diffuses away from the wall. This is because R2Drot +
Dpat controls the patch orientation dynamics, and Dtr controls
the translation of the particle (see Ref. [21] for more on this
phenomenon). Since the trapping rate in (29) is linear in β, it
produces this desired large β behavior.

Summarizing, we expect that homogenization with κ in
(29) is most accurate if either (i) the condition in (34) holds
(and thus κ � 1) or (ii) κ 
 1. We illustrate this in Fig. 6,
where we plot the error in distribution E in (30) as a function
of κ for different values of ε. In this plot, we vary κ by varying
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0
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κ = trapping rate
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d
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tr
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FIG. 6. Error in distribution E in (30) as a function of κ in
(29) for different values of ε. Here Drot = 1, Dpat = 0, �tbig =
10−3, �tsmall = 10−6, and M = 105 trials for each value of ε ∈
{0.05, 0.1, 0.2} and N ∈ {1, 10, 50, 100, 200, 500, 1000}.

N , and κ = κ since we take R = Dtr = 1. This plot illustrates
the expected behavior, in that the error is a nonmonotonic
function of κ , peaking at κ ≈ 1 and decaying for both κ �
1 and κ 
 1. Further, the peaks of the curves decay as ε

decreases.
The patchy particle in our analysis could model a protein

with small binding sites [15], a patchy colloid or nanoparticle
with small reactive patches [16,17], or a cell with small
surface receptors [1]. By assuming the patches are small com-
pared to the particle (ε � 1), our analysis follows previous
work. For example, Refs. [36–38] model protein interactions
and consider ε between approximately 0.02 and 0.1, set N to
be either 1 or 4 and take β = √

3/4 by Stokes-Einstein [see
(39) below], which puts the system in (or at least close to) the
parameter regime in (34). For patchy nanoparticles, Ref. [16]
takes ε ≈ 0.01, sets N to be 1 or 2, and varies β between√

3 × 10−1 and
√

3 × 101, which again puts the system in (or
at least close to) the parameter regime in (34).

B. The case Drot = Dpat = 0

Our results assume that Drot + Dpat > 0 to ensure that the
particle “forgets” its initial patch orientation. Indeed, in the
trivial case that Drot = Dpat = 0, the behavior of the particle
depends critically on the initial patch orientation. Specifically,
if a patch is initially aligned with the absorbing wall, then the
wall immediately absorbs the particle on contact. Otherwise,
the particle will never be absorbed.

The analogous situation occurs in homogenization of
patchy surfaces [Fig. 1(a)]. Indeed, the assumption that Drot +
Dpat > 0 is analogous to the standard assumption in previous
works on homogenization of a patchy surface that there is
nonzero diffusion in the directions parallel to the surface. To
see this, consider the problem of a homogeneous particle and
a patchy surface depicted in Fig. 1(a). Let Dx > 0 denote
the particle diffusivity in the direction perpendicular to the
surface, and let Dy and Dz denote the diffusivities in the
directions parallel to the surface. Previous works assume Dy >

0, Dz > 0, which ensures that the particle “forgets” its initial
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position in the plane parallel to the patchy surface (in fact,
isotropic diffusion is typically assumed, Dx = Dy = Dz >

0). Analogously to the paragraph above, in the trivial case
Dy = Dz = 0, the surface immediately absorbs the particle on
contact if the particle is initially aligned to a patch in the plane
parallel to the surface. Otherwise, the particle will never be
absorbed.

C. Curved absorbing wall

Recall that we derived our results assuming the absorbing
left wall is flat [see Fig. 1(b)]. It is natural to ask whether
our results remain valid if the wall has some curvature. A
smoothly varying wall introduces a new length scale to the
problem, Rc > 0, which is the wall’s characteristic radius of
curvature. Naturally, this radius of curvature must be much
greater than the radius of the particle, Rc 
 R, so that the wall
is locally flat at the length scale of the particle.

In addition, the particle must forget its patch orientation
over timescales in which the wall curvature affects the par-
ticle. Otherwise, the wall curvature would affect the patch
orientation relative to the wall. To illustrate, Fig. 7 depicts
a particle whose patch is initially not aligned with the wall
but becomes aligned after particle translation, due to the wall
curvature.

To prevent the situation in Fig. 7, first notice that the wall
is effectively flat over timescales much less than tc := R2

c/Dtr .
That is, over a timescale much less than tc, the particle moves
a length scale over which the wall is effectively flat. Since the
patches become completely reoriented over the timescale

tr = R2

R2Drot + Dpat
,

requiring that tr � tc ensures that the particle forgets its
patch orientation before it is affected by the wall curvature.
Therefore, our results remain valid in the case of a smoothly
varying wall, as long as Rc 
 R and

tc
tr

= R2Drot + Dpat

Dtr

R2
c

R2
= β2 R2

c

R2

 1. (35)

Dtr

FIG. 7. The thick black curve depicts a curved absorbing left
wall. Here (35) is not satisfied, and the wall curvature affects the
patch orientation relative to the wall.

VI. DISCUSSION

We have found an explicit formula describing the rate that
a diffusing patchy particle binds to a surface. This formula
reveals how the binding rate depends on the translational and
rotational diffusivities of the particle and the diffusivity of the
patches. Mathematically, we formulated the problem in terms
of a high-dimensional, time-dependent, anisotropic diffusion
equation and analyzed this system using matched asymptotic
analysis [12,21]. This analysis yielded the effective trapping
rate in (2). We used numerical simulations to validate this
formula across a range of parameter values.

Importantly, the trapping rate in (2) can be used for model-
ing either a single particle or a concentration of noninteracting
particles and can be applied in both steady-state and time-
dependent problems. Indeed, we found that using the trapping
rate in (2) in a one-dimensional diffusion equation can capture
the full probability distribution of the binding time of a single
particle. For some recent works emphasizing the importance
of the full distribution of binding times in the context of
biochemistry, see Refs. [39–43].

To compare our effective trapping rate to previous work,
let

σ := Na2

4R2

denote the fraction of the particle surface covered by patches.
Previous works [7] have written the effective trapping rate in
the form

κ = 4Dtr

πa
F (σ ), (36)

where F (σ ) is some dimensionless function of σ .
For the case of a homogeneous particle binding to a patchy

surface [see Fig. 1(a)], the effective trapping rate can be
written in the form (36) if

Fbp(σ ) = σ. (37)

Equation (37) is the leading-order behavior for σ � 1 [1];
for higher-order corrections see Refs. [6,7,12]. For a patchy
particle binding to a homogeneous surface [see Fig. 1(b)], we
found that the trapping rate (2) has the form (36) with

F (σ ) = βσ, where β :=
√

R2Drot + Dpat

Dtr
. (38)

Comparing (37) and (38), we see that the leading-order
behavior of the trapping rate for (a) a homogeneous particle
binding to a patchy surface or (b) a patchy particle binding
to a homogeneous surface differs by the factor β ∈ (0,∞).
Notice that β is a dimensionless factor comparing the transla-
tional diffusivity, Dtr , to the effective diffusivity governing the
orientation of the patches, R2Drot + Dpat.

If we take Dpat = 0 and assume the Stokes-Einstein rela-
tion for the particle’s translational diffusivity Dtr and rota-
tional diffusivity Drot, then it follows that

β =
√

3/4 ≈ 0.87, (39)

meaning that (38) corresponds to a slightly slower trapping
rate than (37). However, if the Stokes-Einstein relation cou-
pling Dtr and Drot breaks down (or Dpat > 0), then β can
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differ markedly from
√

3/4. Indeed, there are many situations
in which the Stokes-Einstein relation breaks down, as Dtr

and Drot can be independently altered by molecular crowding
agents or via external fields [16,44–46].

Hence (38) highlights the importance of relative transla-
tional and rotational diffusivities in the binding of a patchy
particle. Determining the contribution of rotational diffusion
to association rates has a long history [44,47], dating back
at least to Ref. [48]. In contrast to the present work, prior
works have focused on the binding of a pair of particles
and have tended to either (i) rely on computer simulations
[16,36,49,50] or (ii) consider a single patch and use heuristic
approximations to make the problem amenable to standard
methods [37,38,51]. The analytical methods we employed
are similar to Refs. [12,21], in which the authors studied
the rate that particles diffusing exterior to a sphere reach
small targets on the sphere’s surface. In the present work, our

analysis required modifying these methods to account for the
particular anisotropic diffusion introduced by the geometry of
our problem, see Fig. 2.

In closing, this work introduces a conceptually new,
first-principles derivation of the so-called partially absorb-
ing boundary condition (also known as a partially reactive,
Robin, third type, impedance, radiation, or convective condi-
tion [52–55]). In contrast to previous derivations where the
boundary condition arises from properties of the boundary
[56–60], the boundary condition in the present work arises
from a property of the particle.
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