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HOW RECEPTOR SURFACE DIFFUSION AND CELL ROTATION
INCREASE ASSOCIATION RATES\ast 

SEAN D. LAWLEY\dagger AND CHRISTOPHER E. MILES\dagger 

Abstract. Many biological processes are initiated when diffusing extracellular reactants reach
receptors on a cell membrane. Calculating this arrival rate has therefore attracted theoretical in-
terest for decades. However, previous work has largely ignored the fact that receptors diffuse on
the two-dimensional cell membrane in a process called surface or lateral diffusion. In this work, we
derive an analytical formula for this arrival rate that takes into account receptor surface diffusion
and cell rotational diffusion. Our theory predicts that the impact of these diffusive processes can
be quantitatively described in terms of the relative size of the cell and the reactant. As applica-
tions, our theory predicts that surface and rotational diffusion have a negligible impact on bacterial
chemoreception and a moderate impact on bacteriophage adsorption. Mathematically, our model is
a three-dimensional anisotropic diffusion equation coupled to boundary conditions that are described
by stochastic differential equations. We first apply matched asymptotic analysis to this stochastic
partial differential equation and then use probabilistic methods to show that the solution can be
represented by a Brownian particle in a stochastic environment. This representation enables efficient
numerical computation of solution statistics and validation of our analytical results.
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1. Introduction. Diffusion determines the timescale of many processes in both
molecular and cellular biology [48]. For example, the response of cells to external
stimuli often depends on the arrival of diffusing ligands to small membrane-bound
receptors. Berg and Purcell calculated this arrival rate in their classic 1977 work [11],
and their landmark paper has gone on to impact diverse areas of biology, including
chemotaxis [15, 36, 38], regulation of gene expression [88], embryonic development
[44], cell mating [72], cell division [45, 49, 51], and cell signaling [15, 88]. Remarkably,
their 41-year-old paper continues to influence current research in biology [5, 41, 67].

A key result of Berg and Purcell is that the rate that extracellular ligands reach
cell surface receptors can be nearly maximal, even if only a small fraction of the
cell's surface contains receptors. This counterintuitive result follows from fundamen-
tal properties of diffusion. Specifically, the translational diffusion of the ligand and
the cell ensures that any ligand that hits the cell surface once will in fact hit the
cell surface many times and thus explore a region of the surface before diffusing
away.

However, this classic work ignores two additional diffusive processes: (i) the sur-
face diffusion of membrane-bound receptors and (ii) the rotational diffusion of the
cell. That is, in addition to the three-dimensional translational diffusion of the ligand
and the cell, each receptor diffuses on the two-dimensional cell surface, and the cell
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Fig. 1. Model schematic. The cell (large gray sphere) and the extracellular reactants (blue
spheres) undergo translational diffusion with combined diffusivity D3d. In addition, the cell surface
contains N receptors (red disks) that diffuse with diffusivity Dsurf, and the cell undergoes rotational
diffusion with diffusivity Drot.

undergoes rotational diffusion; see Figure 1. Receptor surface diffusion (also called
``lateral"" or ``membrane"" diffusion) is known to play a key role in certain biological
processes [31, 35, 77]. More broadly, determining how features of the cell membrane
affect cell signaling has been studied intensely [52]. Nevertheless, how receptor sur-
face diffusion affects rates of binding to extracellular reactants is largely unknown.
In addition, the role of rotational diffusion in association has been studied for many
years [84, 13, 54]. However, theoretical studies have typically either (a) relied on com-
puter simulations [71, 96, 37] or (b) considered the restricted case of a single receptor
and employed heuristic approximations (such as the quasi-chemical approximation)
to make the problem amenable to classical methods [85, 78, 12].

In this paper, we derive an analytical formula for the rate at which diffusing
extracellular reactants arrive at a collection of small receptors on the surface of a
cell, taking into account both receptor surface diffusion and cell rotational diffusion.
After verifying our theory by computer simulations, we apply it to several biophysical
scenarios. We find that the impact of surface and rotational diffusion can be described
quantitatively in terms of the relative size of the cell and the reactant. As applications,
our theory predicts that surface and rotational diffusion have a negligible impact
on bacterial chemoreception and a moderate impact on bacteriophage adsorption.
Furthermore, our results can also be applied to association rates for globular proteins,
which are often modeled as spheres with small reactive sites [13, 71, 96].

Mathematically, our model consists of a three-dimensional anisotropic diffusion
equation coupled to stochastically diffusing boundary conditions. More specifically,
we model the extracellular reactant concentration by the diffusion equation, and the
anisotropy stems from the rotational diffusion of the cell. Further, we impose an
absorbing boundary condition at each of the N \geq 1 cell surface receptors and a
reflecting boundary condition on the rest of the cell surface. We assume that each of
the N receptors diffuses on the cell surface, and thus the boundary conditions for the
diffusion equation are stochastic.
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We apply matched asymptotic analysis [62] to this stochastic partial differential
equation (PDE) and find that reactants reach receptors at rate

Jmax
\lambda \varepsilon N

\lambda \varepsilon N + \pi 
,(1)

where Jmax is the arrival rate to any point on the cell surface [82], N \geq 1 is the
number of cell surface receptors, \varepsilon \ll 1 is the ratio of the radius of a receptor to the
radius of the cell, and

\lambda :=
\sqrt{} 
1 + (Dsurf +R2Drot)/D3d,

where Dsurf is the surface diffusivity of each receptor, Drot is the cell rotational dif-
fusivity, D3d is the sum of the translational diffusivities of the spherical cell and
reactant, and R is the sum of their radii. We then show that the solution to our
stochastic PDE can be represented by a certain statistic of a diffusing particle in a
stochastic environment. This probabilistic representation allows us to verify (1) by
particle simulation methods (as opposed to numerical solution of the time-dependent
stochastic PDE).

The rest of the paper is organized as follows. In section 2, we formulate our
stochastic PDE model. In section 3, we use the method of matched asymptotic
expansions to analyze this stochastic PDE. In section 4, we represent the stochastic
PDE solution in terms of a single Brownian particle. Relying on this probabilistic
representation, we verify our asymptotic results by numerical simulations in section 5.
In section 6, we apply our results to some scenarios in cell biology. We conclude by
discussing related work and highlighting future directions.

2. Model formulation. To set up our model, we briefly review the model of
Berg and Purcell [11]. Consider a spherical cell immersed in an unbounded medium
containing a low concentration of spherical molecules of some reactant. Fixing our
reference frame on the cell, the concentration of the reactant satisfies the diffusion
equation

\partial tc = D3d\Delta c, x \in \BbbR 3\setminus BR, t > 0,(2)

where D3d > 0 is the sum of the diffusivities of the cell and the reactant, and \BbbR 3\setminus BR

is the domain exterior to the ball,

BR := \{ x \in \BbbR 3 : | x| \leq R\} ,

where
R = Rcell +Rreact > 0

is the sum of the radii of the cell and a reactant molecule. Note that (2) uses the
simple geometric fact that the cell and a reactant are in contact if and only if their
centers are distance R apart; see Figure 2. The concentration far from the cell is
fixed,

lim
| x| \rightarrow \infty 

c(x, t) = c\infty > 0.(3)

Assume the cell carries on its surface N receptors for the reactant. Specifically,
define the spherical cap,

\Gamma (y) :=
\bigl\{ 
(Rcell, \theta , \varphi ) : (\theta  - \theta y)

2 + sin2(\theta y)(\varphi  - \varphi y)
2 \leq \varepsilon 2

\bigr\} 
,(4)
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Fig. 2. A reactant molecule (blue sphere) with radius Rreact touches a cell (gray sphere) with
radius Rcell if and only if their centers are distance R = Rcell+Rreact apart. A receptor (red region)
on the cell surface is a spherical cap with angle \varepsilon (see (4)). A reactant reaches a receptor if and
only if the center of the reactant reaches a spherical cap (green region) with angle \varepsilon on the sphere
of radius R.

centered at a point
y \in \partial BRcell

:= \{ x \in \BbbR 3 : | x| = Rcell\} 

with spherical coordinates

y = (Rcell, \theta y, \varphi y) \in \{ Rcell\} \times [0, \pi )\times [0, 2\pi ).

In the following, we make frequent use of both Cartesian and spherical coordinates.
The N receptors are then the spherical caps \{ \Gamma (Yn)\} Nn=1, where

Yn = (Rcell, \theta n, \varphi n)

is the center of the nth receptor. Notice that \varepsilon > 0 is the angle between (i) the ray
from the center of the cell to the apex of the cap (the pole) and (ii) the ray from the
center of the cell to the edge of the disk forming the base of the cap (see Figure 2).
Since the surface area of each cap is

\pi (\varepsilon Rcell)
2 +\scrO (\varepsilon 3) for \varepsilon \ll 1,

we refer to \varepsilon Rcell as the receptor radius.
It is easy to see from Figure 2 that a reactant molecule reaches the nth receptor

\Gamma (Yn) if and only if the center of the reactant reaches the spherical cap\bigl\{ 
(R, \theta , \varphi ) : (\theta  - \theta n)

2 + sin2(\theta n)(\varphi  - \varphi n)
2 \leq \varepsilon 2

\bigr\} 
\in \partial BR.

Therefore, the problem depends on the sum of radii, R = Rcell + Rreact, rather than
on the individual values of the cell radius, Rcell, and the reactant radius, Rreact. Thus,
without loss of generality, we henceforth assume that the reactants are point particles,
so that Rreact = 0 and Rcell = R.

Any reactant molecule that touches a receptor is immediately captured by the
cell, whereas reactant molecules are reflected from the cell surface between recep-
tors. Hence, we impose absorbing boundary conditions at the receptors and reflecting
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boundary conditions away from the receptors,

c = 0, x \in \cup N
n=1\Gamma (Yn),

\partial rc = 0, x \in \partial BR\setminus \{ \cup N
n=1\Gamma (Yn)\} ,

(5)

where \partial r denotes differentiation in the radial direction.
What is the rate that reactant molecules reach receptors? Defining this rate as

the flux over the cell surface,

lim
t\rightarrow \infty 

D3d

\int 
\partial BR

\partial rcdS,(6)

Berg and Purcell [11] approximate the flux in (6) by the formula

Jbp := Jmax
\varepsilon N

\varepsilon N + \pi 
,(7)

where

Jmax := 4\pi c\infty D3dR(8)

is the flux when the entire cell surface is absorbing (the formula for Jmax is due to
Smoluchowski [82]). The expression in (7) closely approximates (6) if both (i) the
fraction of the cell surface covered by receptors is small, N\varepsilon 2/4 \ll 1, and (ii) the
receptors are approximately uniformly distributed on the cell surface [62, 55].

We now generalize the model of Berg and Purcell. To determine how cell ro-
tational diffusion affects the flux, we suppose that the cell has rotational diffusivity
Drot \geq 0. Allowing the reference frame to rotate with the cell effectively transfers
the rotational diffusion to the reactant concentration (see [85]), so that if \BbbL is the
rotational Laplacian (Laplace--Beltrami) operator,

\BbbL := (sin(\theta )) - 2\partial \varphi \varphi + cot(\theta )\partial \theta + \partial \theta \theta ,(9)

then (2) becomes

\partial tc = D3d\Delta c+Drot\BbbL c, x \in \BbbR 3\setminus BR, t > 0.(10)

Further, to determine how receptor surface diffusion affects the flux, we suppose
that the receptors diffuse independently on the cell surface with diffusivity Dsurf \geq 0.
Hence, the spherical coordinates of the center of the nth receptor now depend on
time,

Yn(t) = (R, \theta n(t), \varphi n(t)),

and obey the stochastic differential equations (SDEs),

d\theta n(t) = R - 2Dsurf cot(\theta n(t)) dt+R - 1
\sqrt{} 

2Dsurf dW(\theta ,n)(t),

d\varphi n(t) = (R sin(\theta n(t)))
 - 1

\sqrt{} 
2Dsurf dW(\varphi ,n)(t), n = 1, . . . , N,

(11)

where \{ W(\theta ,n)\} Nn=1 and \{ W(\varphi ,n)\} Nn=1 are independent standard Brownian motions.
We assume the random initial receptor positions are independent and uniformly dis-
tributed on the cell surface \partial BR.
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Hence, the receptors \{ \Gamma (Yn(t))\} Nn=1 now move stochastically in time and the
boundary conditions in (5) become

c = 0, x \in \cup N
n=1\Gamma (Yn(t)),

\partial rc = 0, x \in \partial BR\setminus \{ \cup N
n=1\Gamma (Yn(t))\} .

(12)

Thus, the concentration, c(x, t), is now a stochastic process. In the next section, we
use formal asymptotic methods to analyze this stochastic PDE in the limit that the
receptors are small (\varepsilon \ll 1).

3. Matched asymptotic analysis of the stochastic PDE. We are interested
in the large time mean flux,

J := lim
t\rightarrow \infty 

D3d\BbbE 
\int 
\partial BR

\partial rcdS,(13)

of the stochastic solution, c(x, t), to (10)--(12). Integrating c(x, t) over the annu-
lar region BR\prime \setminus BR with R\prime > R, differentiating with respect to time, interchanging
differentiation and integration, and using the divergence theorem yields

d

dt

\int 
BR\prime \setminus BR

cdx = D3d

\int 
BR\prime \setminus BR

\Delta cdx+Drot

\int 
BR\prime \setminus BR

\BbbL cdx

= D3d

\Bigl( \int 
\partial BR\prime 

\partial rcdS  - 
\int 
\partial BR

\partial rcdS
\Bigr) 
.

(14)

In (14), we have used that

\BbbL c = \nabla \cdot 
\Bigl( 
0, r\partial \theta c,

r

sin \theta 
\partial \varphi c

\Bigr) 
,

and thus the divergence theorem ensures\int 
BR\prime \setminus BR

\BbbL cdx = 0.

Assuming

lim
t\rightarrow \infty 

\BbbE 
d

dt

\int 
BR\prime \setminus BR

c(x, t) dx = 0,

it then follows from (14) that

lim
t\rightarrow \infty 

\BbbE 
\int 
\partial BR\prime 

\partial rcdS = lim
t\rightarrow \infty 

\BbbE 
\int 
\partial BR

\partial rcdS.

That is, the flux across a ball of radius R\prime > R is independent of R\prime . Interchanging
expectation, integration, and differentiation, we conclude

lim
t\rightarrow \infty 

\BbbE [c(x, t)] = c\infty (1 - C| x|  - 1)(15)

for some constant C > 0. In an analogy to electrostatics, we refer to C as the
capacitance. Calculating the flux in (13) reduces to finding the capacitance, since
(15) implies

J = 4\pi c\infty D3dC.(16)
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As in [11], we assume the receptors are small, \varepsilon \ll 1. For ease, we also assume
that the initial concentration is given by the right-hand side of (15),

c(x, 0) = c\infty (1 - C| x|  - 1),

so that the mean concentration, \BbbE [c(x, t)], is constant in time. Then, if we rescale the
concentration,

v(x, t) :=
 - c(x, t)

c\infty C
,

it follows that

\BbbE [v(x, t)] =  - C - 1 + | x|  - 1 for all t \geq 0.(17)

We expect that v(x, t) has a boundary layer near each diffusing receptor, so we use
the method of matched asymptotic expansions as in [62]. Since we expect C = \scrO (\varepsilon )
[11], we expand v in the outer region away from the diffusing receptors as

v \sim \varepsilon  - 1v0 + v1 + \cdot \cdot \cdot ,

where v0 is some constant. Substituting this outer expansion into (10)--(12) yields

\partial tv1 = D3d\Delta v1 +Drot\BbbL v1, x \in \BbbR 3\setminus BR,

\partial rv1 = 0, x \in \partial BR\setminus \{ \cup N
n=1Yn(t)\} .

(18)

Observe that from the perspective of the outer solution v1, the receptors are points.
The analysis below yields the singular behavior of v1 as x \rightarrow Yn(t).

In the inner region near the nth receptor, we introduce the local coordinates
(\eta , s1, s2) defined by

\eta = \varepsilon  - 1(r/R - 1),

s1 = \varepsilon  - 1 sin(\theta n(t))\lambda 
 - 1(\varphi  - \varphi n(t)),

s2 = \varepsilon  - 1\lambda  - 1(\theta  - \theta n(t)),

and define the inner solution w as a function of local coordinates,

w(\eta , s1, s2, t) := v
\bigl( 
R+ \varepsilon R\eta , \varphi n(t) + \varepsilon \lambda (sin \theta n(t))

 - 1s1, \theta n(t) + \varepsilon \lambda s2, t
\bigr) 
,(19)

where

\lambda :=
\sqrt{} 
1 +D2d/D3d and D2d := Dsurf +R2Drot.

Note that the coordinates (\eta , s1, s2) and the inner solution w depend on the index
n \in \{ 1, . . . , N\} , but we have suppressed this dependence for clarity.

Assuming the function v(r, \theta , \varphi , t) is twice continuously differentiable, then a di-
rect application of It\^o's formula [50] implies that the inner solution w satisfies the
stochastic integral equation for each T \geq 0,

w(\eta , s1, s2, T ) - w(\eta , s1, s2, 0) =

\int T

0

\partial \varphi v d(\varphi n(t) + \varepsilon \lambda (sin \theta n(t))
 - 1s1)

+

\int T

0

\partial \theta v d(\theta n(t) + \varepsilon \lambda s2) +

\int T

0

\partial tv dt

+
1

2

\int T

0

\partial \varphi \varphi v (d(\varphi n(t) + \varepsilon \lambda (sin \theta n(t))
 - 1s1))

2

+
1

2

\int T

0

\partial \theta \theta v (d(\theta n(t) + \varepsilon \lambda s2))
2.

(20)
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We note that in the right-hand side of (20), every instance of v is evaluated at

v = v(R+ \varepsilon R\eta , \varphi n(t) + \varepsilon \lambda (sin \theta n(t))
 - 1s1, \theta n(t) + \varepsilon \lambda s2, t),

but we have suppressed this dependence for clarity. Using the It\^o calculus rules [50],

dWi(t) \cdot dWi(t) = dt, dWi(t) \cdot dWj(t) = dWi(t) \cdot dt = dt \cdot dt = 0 if i \not = j,

for independent standard Brownian motions Wi(t) and Wj(t), and the scalings,

\partial r = \varepsilon  - 1R - 1\partial \eta , \partial \varphi =  - \varepsilon  - 1\lambda  - 1 sin \theta n(t)\partial s1 , \partial \theta =  - \varepsilon  - 1\lambda  - 1\partial s2 ,

we have that (20) becomes for \varepsilon \ll 1,

w(\eta , s1, s2, T ) - w(\eta , s1, s2, 0) = \varepsilon  - 2\lambda  - 2DsurfR
 - 2

\int T

0

(\partial s1s1 + \partial s2s2)w dt

+

\int T

0

(D3d\Delta +Drot\BbbL )v dt+\scrO (\varepsilon  - 1).

Now, it is straightforward to check that

D3d\Delta +Drot\BbbL = \varepsilon  - 2R - 2D3d\partial \eta \eta 

+ \varepsilon  - 2R - 2\lambda  - 2(D3d +R2Drot)(\partial s1s1 + \partial s2s2) +\scrO (\varepsilon  - 1).

Hence, using the definition of \lambda and w, we have that

w(\eta , s1, s2, T ) - w(\eta , s1, s2, 0) = \varepsilon  - 2R - 2D3d

\int T

0

(\partial \eta \eta + \partial s1s1 + \partial s2s2)w dt+\scrO (\varepsilon  - 1).

(21)

Plugging the inner expansion w = \varepsilon  - 1w0 + w1 + \cdot \cdot \cdot into (21) and using that
T \geq 0 is arbitrary implies that w0 is harmonic in the upper half-space,

(\partial \eta \eta + \partial s1s1 + \partial s2s2)w0 = 0, \eta > 0, s1 \in \BbbR , s2 \in \BbbR .(22)

Furthermore, it follows immediately from the definition of v and w that w0 satisfies
the following boundary conditions on the \eta = 0 plane,

\partial \eta w0 = 0 on \eta = 0, s21 + s22 \geq \lambda  - 2,

w0 = 0 on \eta = 0, s21 + s22 \leq \lambda  - 2.

This problem for w0 can be solved using the solution to the so-called electrified disk
problem from electrostatics [40]. Explicitly, we have that

w0 = A
\bigl( 
1 - (2/\pi ) arcsin(\zeta )

\bigr) 
,

where

\zeta : = 2
\bigl( 
[(\sigma + 1)2 + \eta 2]1/2 + [(\sigma  - 1)2 + \eta 2]1/2

\bigr)  - 1
and \sigma :=

\sqrt{} 
s21 + s22,

and thus w0 has the far-field behavior

w0 \sim A
\bigl( 
1 - 2(\lambda \pi \rho ) - 1

\bigr) 
as \rho :=

\sqrt{} 
\eta 2 + s21 + s22 \rightarrow \infty ,(23)

where A is a constant to be determined by matching to the outer solution.
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The matching condition is that the near-field behavior of the outer expansion as
x \rightarrow Yn(t) must agree with the far-field behavior of the inner expansion as \rho \rightarrow \infty .
That is,

\varepsilon  - 1v0 + v1 + \cdot \cdot \cdot \sim \varepsilon  - 1w0 + w1 + \cdot \cdot \cdot as x \rightarrow Yn(t), \rho \rightarrow \infty .(24)

Plugging (23) into (24) implies that A = v0 and that v1 has the following singular
behavior,

v1 \sim  - v02/\pi \sqrt{} 
\lambda 2( r

R  - 1)2 + sin2(\theta n(t))(\varphi  - \varphi n(t))2 + (\theta  - \theta n(t))2
as x \rightarrow Yn(t).(25)

Writing the singular behavior in (25) in distributional form, the problem in (18)
becomes

\partial tv1 = D3d\Delta v1 +Drot\BbbL v1, x \in \BbbR 3\setminus BR,(26)

\partial rv1 =
4\lambda v0
R

N\sum 
n=1

\delta (\theta  - \theta n(t))

sin(\theta n(t))
\delta (\varphi  - \varphi n(t)), x \in \partial BR.(27)

To see why (26)--(27) is the distributional form of (18) and (25), suppose a function
f satisfies (26)--(27). To determine the behavior of f as x \rightarrow Yn(t) \in \partial BR, let
0 < \varepsilon \ll 1 and define (analogously to (19))

g(\eta , s1, s2, t) := f(R+ \varepsilon R\eta , \varphi n(t) + \varepsilon \lambda (sin \theta n(t))
 - 1s1, \theta n(t) + \varepsilon \lambda s2, t),

for \eta > 0, s1 \in \BbbR , s2 \in \BbbR . Expanding g as g = g0/\varepsilon + g1 + \cdot \cdot \cdot , the argument that
led to (22) yields that g0 satisfies

(\partial \eta \eta + \partial s1s1 + \partial s2s2)g0 = 0, \eta > 0, s1 \in \BbbR , s2 \in \BbbR .(28)

Furthermore, a direct calculation using (27) shows that

\partial \eta g(\eta , s1, s2, t) =
4v0
\lambda \varepsilon 

\delta (s1)\delta (s2)

and, thus,

\partial \eta g0 =
4v0
\lambda 

\delta (s1)\delta (s2), \eta = 0, s1 \in \BbbR , s2 \in \BbbR .(29)

The solution to (28) and (29) is

g0 =
 - 2v0

\lambda \pi 
\sqrt{} 
\eta 2 + s1

2 + s2
2
.

Matching the far-field behavior of g0/\varepsilon with the near-field behavior of f implies that
f has the singular behavior in (25) as x \rightarrow Yn(t).

As in (14) above, we integrate (26) over the annular region BR\prime \setminus BR with R\prime > R
and use the divergence theorem and the boundary conditions in (27) to obtain

d

dt

\int 
BR\prime \setminus BR

v1 dx = D3d

\int 
BR\prime \setminus BR

\Delta v1 dx+Drot

\int 
BR\prime \setminus BR

\BbbL v1 dx

= D3d

\Bigl( \int 
\partial BR\prime 

\partial rv1 dS  - 
\int 
\partial BR

\partial rv1 dS
\Bigr) 

= D3d

\Bigl( \int 
\partial BR\prime 

\partial rv1 dS  - 4\lambda v0RN
\Bigr) 
.

(30)
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Now, it follows from (17) that

\BbbE 
\int 
\partial BR\prime 

\partial rv1 dS =  - 4\pi .

Hence, taking the expectation of (30) at large time determines the value of v0,

v0 =
 - \pi 

\lambda RN
.

Since  - c(x, t)/(c\infty C) = v(x, t) \sim \varepsilon  - 1v0 and c \rightarrow c\infty as | x| \rightarrow \infty , we obtain the
following asymptotic behavior of the capacitance,

C \sim \lambda \varepsilon NR/\pi as \varepsilon \rightarrow 0.(31)

By (16), the flux in (13) has the leading order behavior

J \sim Jmax\lambda \varepsilon N/\pi as \varepsilon \rightarrow 0.(32)

To summarize, if we compare (32) to (7), then we see that surface and rotational
diffusion increase the flux by the dimensionless factor \lambda =

\sqrt{} 
1 +D2d/D3d in the small

receptor limit (\varepsilon \ll 1), where D2d = Dsurf + R2Drot is the effective two-dimensional
receptor diffusivity. Since \lambda \geq 1, (32) implies that allowing the receptors to diffuse
and/or allowing the cell to rotate strictly increases the flux to receptors. One way to
interpret (32) is that the effective radius of each receptor is increased by \lambda \geq 1, so
that the effective area of each receptor increases from \pi (\varepsilon R)2 to

\pi (\lambda \varepsilon R)2 = (1 +D2d/D3d)\pi (\varepsilon R)2.

3.1. Incorporating receptor competition. The flux formula in (32) is valid
in the small receptor limit, \varepsilon \rightarrow 0. However, the formula breaks down if we take the
number of receptors N \rightarrow \infty for fixed \varepsilon > 0. To see why, observe that the receptors
completely cover the cell surface if N \rightarrow \infty , and thus the flux in (13) must approach
Jmax in (8) as N \rightarrow \infty . However, (32) grows without bound as N \rightarrow \infty . Similarly,
(32) grows without bound as \lambda \rightarrow \infty .

To ameliorate this problem, we adapt the approach of [79] and homogenize the
stochastic and heterogeneous boundary conditions in (12) by the Robin condition,

D3d\partial rc = \kappa c, x \in \partial BR,(33)

where \kappa > 0 is the so-called ``leakage"" parameter. Note that (33) becomes perfectly
reflecting (perfectly absorbing) in the limit \kappa \rightarrow 0 (\kappa \rightarrow \infty ).

To derive a formula for \kappa , we note that (15) implies that the large time mean of
the solution to (3), (10), and (12) satisfies a Robin condition of the form of (33) with

\kappa =
D3dC

R2  - CR
.

Hence, the formula for the capacitance in (31) yields

\kappa \sim D3d\lambda \varepsilon N

\pi R
as \varepsilon \rightarrow 0.(34)
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Now, if c(x, t) satisfies (3), (10), and (33), then its large time flux defined in (6) is

Jmax
\kappa R

D3d + \kappa R
.(35)

Plugging (34) into (35) yields the approximation

J\ast := Jmax
\lambda \varepsilon N

\lambda \varepsilon N + \pi 
\approx J := lim

t\rightarrow \infty 
D3d\BbbE 

\int 
\partial BR

\partial rcdS.(36)

3.2. Limiting behavior of the flux. Before verifying that J\ast in (36) closely
approximates J for \varepsilon \ll 1 in the following sections, we first check that J\ast has the
desired behavior in various parameter limits. First,

J\ast \sim Jmax\lambda \varepsilon N/\pi as \varepsilon \rightarrow 0,

as required by (32). Second, J\ast reduces to the Berg and Purcell flux, Jbp, in (7) for
immobile receptors on a nonrotating cell. That is, setting Dsurf = Drot = 0 implies
\lambda = 1 and thus J\ast reduces to Jbp. In fact,

J\ast \sim Jbp as D2d/D3d \rightarrow 0.

Third, in the many receptor limit, J\ast approaches the flux for a cell whose entire
surface is absorbing,

J\ast \rightarrow Jmax as N \rightarrow \infty .

Finally, the most interesting limit is that of large surface and/or rotational diffu-
sivity, in which we find

J\ast \sim Jmax as D2d/D3d \rightarrow \infty .(37)

Curiously, (37) implies that the N receptors are effectively everywhere on the cell
surface at once if D2d/D3d \gg 1. For example, even in the case when a very small
fraction, f \in (0, 1), of the cell surface is absorbing,

f \approx N\pi (\varepsilon R)2

4\pi R2
=

N\varepsilon 2

4
\ll 1,(38)

the flux can be nearly identical to the flux for a cell whose entire surface is absorbing,
provided D2d/D3d is sufficiently large.

To understand this result, we note three facts. First, a fundamental property of
diffusion ensures that any reactant that hits the cell surface once will necessarily hit
the cell surface many times before diffusing away. (In fact, if a Brownian particle
hits a boundary once, then the particle hits the boundary infinitely many times [50]).
Second, the time between hits to the cell surface is inversely proportional to D3d.
Third, the equilibrium distribution of the receptors is uniform on the cell surface, and
the relaxation rate to this equilibrium is proportional to D2d.

Therefore, if D2d/D3d \gg 1, then any reactant that hits the cell surface once will
hit the surface many times and the distribution of the receptors at a large subset of
these hitting times will be approximately uniform and independent. Hence, even if
the probability that the reactant hits a receptor upon a single hit to the cell surface is
small (this probability is the fraction f in (38)), the reactant hits the cell surface many
times, and the receptor distribution is independent at many of these hits, and thus the
reactant hits a receptor with high probability. We note that a similar phenomenon was
discovered in [60], in which a boundary that switches temporally between absorbing
and reflecting becomes perfectly absorbing in the limit that the switching is fast
compared to the diffusion timescale of the particles.
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4. Particle perspective of the stochastic PDE. In this section, we show
that the solution to the stochastic PDE in (10)--(12) is a certain statistic of a single
particle diffusing in an environment that changes stochastically in time. This rep-
resentation allows us to numerically approximate the solution of the PDE by Monte
Carlo simulations of a single diffusing particle. Without this representation, we would
need to numerically solve the time-dependent stochastic PDE over many realizations
of the stochastic boundary conditions. Such a procedure would be quite intractable,
as numerically solving the steady state PDE for stationary receptors is already a
difficult problem that requires sophisticated numerical methods [14].

Consider a diffusing particle X(t) \in \BbbR 3\setminus BR with spherical coordinates

X(t) = (r(t),\Theta (t),\Phi (t)) \in [R,\infty )\times [0, \pi )\times [0, 2\pi )

satisfying

dr(t) = 2D3d(r(t))
 - 1 dt+

\sqrt{} 
2D3d dWr(t) + dL(t),(39)

d\Theta (t) = D(t) cot(\Theta (t)) dt+
\sqrt{} 

2D(t) dW\Theta (t),(40)

d\Phi (t) =
\sqrt{} 

2D(t)(sin(\Theta (t))) - 1 dW\Phi (t),(41)

where Wr(t),W\Theta (t),W\Phi (t) are independent standard Brownian motions, D(t) :=
D3d(r(t))

 - 2 + Drot, and L(t) is the local time of X(t) in \partial BR. That is, L(t) is
nondecreasing and increases only when X(t) is in \partial BR. The significance of the local
time term in (39) is that it forces X(t) to reflect from \partial BR and thus ensures that
X(t) \in \BbbR 3\setminus BR for all t \geq 0 (see, for example, Chapter 6, page 399 and following
in [50] for more on local time theory). We note that the dynamics of X(t) are cho-
sen so that its infinitesimal generator involves the self-adjoint differential operator,
D3d\Delta +Drot\BbbL , on the right-hand side of (10).

For our analysis in this section, it is convenient to assume the paths of the recep-
tors Y(t) = (Y1(t), . . . , YN (t)) \in (\partial BR)

N satisfy (11) for all t \in \BbbR (rather than only
t \geq 0). For T \geq 0, define the stopping time

\tau (T ) := inf\{ t > 0 : X(t) \in \cup N
n=1\{ \Gamma (Yn(T  - t))\} \} \leq \infty ,(42)

which is the first time X(t) reaches one of the N diffusing receptors, where time runs
in reverse for the receptors. If \tau = \infty , then the particle X(t) never reaches a diffusing
receptor. Since three-dimensional Brownian motion is transient, the event \tau = \infty 
occurs with strictly positive probability.

In the following, let \BbbE x denote expected value conditioned on the initial location,

X(0) = x \in \BbbR 3\setminus BR.(43)

Further, let \BbbE x[ \cdot | Y] denote expected value conditioned on (43) and a realization of
the diffusing receptors, Y = \{ (Y1(t), . . . , YN (t))\} t\in \BbbR . Similarly, let \BbbP x and \BbbP x( \cdot | Y)
denote the associated probability measures. We emphasize that the receptors Y and
the particle X are independent.

For T \geq 0, define the stochastic process

Z(t) := c(X(t), T  - t), t \in [0, T ],

where c(x, t) satisfies (10)--(12). Note that Z depends on the path of X and Y.
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Applying It\^o's formula to Z(t) yields

Z(t) - Z(0) = c(X(t), T  - t) - c(X(0), T )

=

\int t

0

( - \partial t +D3d\Delta +Drot\BbbL )c(X(s), T  - s) ds+

\int t

0

\partial rc(X(s), T  - s) dL(s) +M

= 0 +

\int t

0

\partial rc(X(s), T  - s) dL(s) +M,

(44)

where M satisfies \BbbE x[M | Y] = 0. We have used (10) in the final equality in (44).
If we evaluate (44) at t equal to the stopping time given by the minimum of \tau (T )

and T and use the definition of \tau (T ) in (42) and the boundary conditions in (12),
then we obtain

c
\bigl( 
X(min\{ \tau (T ), T\} ), T  - min\{ \tau (T ), T\} 

\bigr) 
 - c(X(0), T ) = M almost surely.(45)

Taking the expectation of (45) conditioned on a realization Y of receptor paths yields

\BbbE x[c(X(0), T ) | Y] = \BbbE x

\Bigl[ 
c
\bigl( 
X(min\{ \tau (T ), T\} ), T  - min\{ \tau (T ), T\} 

\bigr) 
| Y

\Bigr] 
= \BbbE x[c

\bigl( 
X(\tau (T )), T  - \tau (T )

\bigr) 
1\tau (T )\leq T | Y]

+ \BbbE x[c
\bigl( 
X(T ), 0

\bigr) 
1\tau (T )>T | Y],

(46)

where 1A denotes the indicator function on an event A, which is defined to be 1 if A
occurs and 0 otherwise. Now, c(x, T ) is measurable with respect to Y and, therefore,

\BbbE x[c(X(0), T ) | Y] = c(x, T ).(47)

Further, by the definition of \tau (T ) in (42) and the boundary conditions in (12), we
have that

c
\bigl( 
X(\tau (T )), T  - \tau (T )

\bigr) 
1\tau (T )\leq T = 0 almost surely.(48)

Hence, if we assume the initial condition

c(x, 0) = c\infty , x \in \BbbR 3\setminus BR,

then (46)--(48) yield

c(x, T ) = c\infty \BbbP x(\tau (T ) > T | Y) for T \geq 0 almost surely.(49)

Equation (49) highlights that there are two sources of randomness in this model.
Namely, there is the random path of the particle, X, and the random paths of the
receptors, Y. Equation (49) (and thus (10)--(12)) is an average over particle paths for
a fixed realization of the receptor paths. Therefore, (49) depends on the realization
of receptor paths, Y.

If we take the expectation of (49) over receptor paths, then we obtain

\BbbE [c(x, T )] = c\infty \BbbP x(\tau > T ),(50)

where we have defined \tau := \tau (0), since the stationarity of the receptor distribution
and the independence of X and Y ensure that

\BbbP x(\tau (s) > T ) = \BbbP x(\tau (t) > T ) for all s, t \in \BbbR .
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Fig. 3. Theory and numerical simulations. a: Flux per receptor as a function of surface and
rotational diffusivity D2d := Dsurf + R2Drot for different numbers of receptors, N . The curves are
J\ast /N for J\ast in (36). b: Normalized reaction rate as a function N for different values of D2d. The
curves are J\ast /Jmax for J\ast in (36). In both plots, \varepsilon = 10 - 1.5 \approx 0.03 and R = D3d = 1. See the text
for simulation details.

Taking T \rightarrow \infty in (50) yields

lim
T\rightarrow \infty 

\BbbE [c(x, T )] = c\infty \BbbP x(\tau = \infty ) = c\infty (1 - C| x|  - 1).(51)

In words, (51) states that the large time mean of the stochastic PDE in (10)--(12)
evaluated at a point x \in \BbbR 3\setminus BR is the far-field concentration c\infty multiplied by the
probability that a particle starting at x \in \BbbR 3\setminus BR will escape to spatial infinity rather
than be absorbed at a diffusing receptor. We note that the escape probability of a
single diffusing particle is often used to study association rates [2, 95].

5. Numerical simulation. The relation in (51) allows us to numerically es-
timate the large time mean of the stochastic PDE in (10)--(12) by simulating the
diffusive path of a particle in the presence of diffusing receptors. Before detailing our
simulation method, we outline the main points. We simulate the path of a single par-
ticle diffusing outside the cell and the paths of diffusing cell surface receptors until the
particle either reaches a receptor or reaches some large outer radius R\infty \in (R,\infty ). We
then repeat this process many times and compute the fraction of particles that reach
the outer radius before reaching a receptor. A certain modification of this fraction
then yields an approximation to the probability that the particle escapes to spatial
infinity, \BbbP x(\tau = \infty ). Equation (51) then relates this probability to the capacitance C
of the large time mean solution, which in turn yields the mean flux by (16).

Figure 3 shows excellent agreement between these stochastic simulations and our
analytical formula J\ast in (36) for the flux. The largest error is in Figure 3(b) when
D2d = 0.1 andN = 1000, in which case the surface area fraction, f \in (0, 1), covered by
receptors is f \approx N\varepsilon 2/4 = 1/4. This error is to be expected, since our approximation
J\ast reduces to the Berg--Purcell approximation Jbp when D2d = 0, and it is known
that the accuracy of Jbp breaks down if f is not sufficiently small [62, 55]. We
also note that the accuracy of Jbp requires an approximate uniform arrangement of
well-separated receptors [62, 55]. If the receptors diffuse independently, then their
distribution converges exponentially in time to a random uniform distribution on the
surface, regardless of their initial placement. Hence, if the expected area fraction
is small, f \ll 1, then receptor diffusion ensures that receptors will be uniformly
distributed and well-separated with high probability.
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We now describe our stochastic simulation algorithm in more detail. For R =
D3d = 1, \varepsilon = 10 - 1.5 \approx 0.03, and varying values of D2d and N , we simulated the
diffusive paths of 105 particles satisfying the SDEs (39)--(41). For each of the 105

particles, we also simulated the paths of the N surface receptors satisfying (11). We
used the Euler--Maruyama method [53] for both the particle and receptor paths. The
simulation data plotted in Figure 3 is for Dsurf = Drot = 1

2D2d, though we found
that simulation data for both Dsurf = D2d, Drot = 0 and Drot = D2d, Dsurf = 0 were
indistinguishable (as predicted by (36)).

Initially, we place the particle at radius R0 \in (R,R\infty ) (we take R0 = 1.1) and
randomly distribute the receptors uniformly on the sphere. The discrete time step \Delta t
for the Euler--Maruyama method varied between 10 - 4 and 10 - 2, depending on the
radial distance away from either boundary. That is, \Delta t transitions from small to large
by a heuristically determined sigmoidal function of min \{ r  - R,R\infty  - r\} . When the
particle hits the cell surface, it is either absorbed if it hits a receptor or reflected off
the sphere using the tangent plane at the point of intersection. Each simulation runs
until the particle is absorbed at either a receptor or the large outer radius R\infty (we
take R\infty = 10). To determine if the particle is absorbed at the outer radius during a
given time step, we first note that if the radius of the particle at the end of the time
step is larger than R\infty , then the particle should obviously be absorbed. However, it
is also possible for the particle to be absorbed at R\infty if the radius of the particle is
less than R\infty at both the start and the end of a time step. Neglecting curvature and
following [4], the probability of crossing R\infty in a time step initially distance \ell i from
R\infty and updated to distance \ell u is given by exp( - 2\ell i\ell u/s

2), where s :=
\surd 
2D3d\Delta t.

For a set of 105 trials with fraction q \in [0, 1] absorbed at R\infty , we obtain the
approximation

q \approx \BbbP R0
(\tau > \tau R\infty ),(52)

where \BbbP r is the probability measure conditioned on an initial particle radius, | X(0)| =
r, and \tau R\infty is the first time the particle reaches the outer radius R\infty ,

\tau R\infty := inf\{ t > 0 : | X(t)| = R\infty \} .

To find an approximation for \BbbP R0(\tau = \infty ), we follow [69, 70] and note that

1 - C
R0

= \BbbP R0
(\tau = \infty ) = \BbbP R0

(\tau = \infty | \tau > \tau R\infty )\BbbP R0
(\tau > \tau R\infty )

\approx \BbbP R\infty (\tau = \infty )\BbbP R0
(\tau > \tau R\infty ) =

\bigl( 
1 - C

R\infty 

\bigr) 
\BbbP R0(\tau > \tau R\infty ).(53)

The error in the approximate equality (53) vanishes as R\infty /R and/or D2d/D3d grow.
Rearranging (53) and using (52) yields a numerical approximation to the capacitance,

C \approx (1 - q)R0R\infty 

R\infty  - qR0
.

Plugging this value into (16) yields our numerical approximation to the flux that is
plotted in Figure 3 against our asymptotic formula for the flux in (36).

6. Applications to cell biology. Summarizing (32), an extracellular reactant
diffusing with diffusivity D3d reaches a small surface-bound receptor at rate

k := \lambda k0 with \lambda :=
\sqrt{} 
1 +D2d/D3d,(54)
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where D2d := Dsurf + R2Drot is the sum of the receptor surface diffusivity and the
cell rotational diffusivity, and k0 is the corresponding rate for an immobile receptor
(Dsurf = 0) on a nonrotating cell (Drot = 0). That is, surface and rotational diffusion
increase the ``reaction"" rate by the factor \lambda \geq 1. As previous rate calculations have
largely omitted surface and rotational diffusion, we now investigate when such an
omission is valid.

6.1. General biophysical calculations. Before discussing (54) in some spe-
cific biological contexts, we perform some general calculations based on the relative
sizes of the cell and the reactant that is to bind to a cell receptor. Equation (54)
implies that the importance of surface and rotational diffusion is determined by the
ratios Dsurf/D3d and R2Drot/D3d. Recalling that D3d is the sum of the cell and re-
actant translational diffusivities and assuming the Stokes--Einstein relation holds (as
is done, for example, for rotational diffusion of E. coli ; see pages 81--83 in [10]), we
have

D3d =
kBT

6\pi \eta Rcell
+

kBT

6\pi \eta Rreac
, Drot =

kBT

8\pi \eta (Rcell)3
,(55)

where Rcell, Rreac are the radii of the cell and reactant, kB is Boltzmann's constant,
T is temperature, and \eta is the viscosity of the extracellular medium. Noting that
R = Rcell +Rreac, we have that (55) implies [12]

R2Drot/D3d = 3
4 (\rho + \rho 2), \rho := Rreac/Rcell.(56)

Equation (56) has two immediate consequences. First, if the reactant is small
compared to the cell (\rho \ll 1), then cell rotational diffusion only mildly increases
reaction rates. Indeed, if \rho = 0.1, then (56) implies (ignoring receptor diffusion)

\lambda =
\sqrt{} 

1 +R2Drot/D3d \approx 1.04.

Thus, rotational diffusion yields only a 4\% increase in reaction rate. While small, we
note that a 4\% increase is comparable to a well-known correction to the reaction rate
based on receptor competition [97] (see the section below for more details). Second, if
the reactant is not much smaller than the cell, then rotational diffusion significantly
increases reaction rates. To illustrate, if \rho = 1, then

\lambda =
\sqrt{} 
1 +R2Drot/D3d \approx 1.58,

meaning rotational diffusion alone yields a 58\% increase.
Moving to receptor diffusion, (55) implies

Dsurf/D3d = \chi DsurfRcell

\Bigl( \rho 

1 + \rho 

\Bigr) 
, \chi :=

6\pi \eta 

kBT
.(57)

Now, diffusion coefficients of membrane-associated proteins are typically in the range
Dsurf \in [0.01, 0.5]\mu m2/s [56, 87]. In addition, a typical cell radius is between Rcell =
0.35\mu m (a small bacteria) and Rcell = 15\mu m (a large mammalian cell). Hence, if we
take \eta to be the viscosity of water and T = 293K, then (57) implies the typical range

0.02
\Bigl( \rho 

1 + \rho 

\Bigr) 
\leq Dsurf/D3d \leq 31

\Bigl( \rho 

1 + \rho 

\Bigr) 
.(58)

The lower and upper bounds in (58) correspond, respectively, to Dsurf = 0.01\mu m2/s,
Rcell = 0.35\mu m and Dsurf = 0.5\mu m2/s, Rcell = 15\mu m.
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Equations (57)--(58) imply that if the reactant is not much smaller than the cell
(\rho \approx 1 or \rho > 1), then receptor diffusion significantly increases reaction rates for large
cells and/or very mobile receptors. For example, if \rho = 1, Dsurf = 0.5\mu m2/s, and
Rcell = 15\mu m, then (ignoring rotation)

\lambda =
\sqrt{} 
1 +Dsurf/D3d \approx 4.06,

meaning receptor diffusion alone quadruples the reaction rate. Furthermore, even if
we decrease the relative size to \rho = 0.1 (implying the cell volume is 1000 times greater
than the reactant volume), it follows that \lambda \approx 1.96 and thus receptor diffusion almost
doubles the reaction rate. Of course, (57) also implies that the effect of receptor
diffusion decreases as we reduce Dsurf, Rcell, and/or \rho .

6.2. Chemoreception and bacteriophage adsorption. We now apply our
results to some biological scenarios. In the case of chemoreception, the reactant is
much smaller than a cell and, thus, (56) and (57) imply that both rotational diffusion
and receptor diffusion have almost no impact on reaction rates. For example, in the
case of bacteria sensing amino acids, we have \rho < 0.005, in which case (56)--(57) with
Rcell = 0.35\mu m and Dsurf = 0.5\mu m2/s yield \lambda < 1.004.

In contrast, receptor and rotational diffusion have a stronger impact on bacterial
cells adsorbing bacteriophages since bacteriophages are closer in size to bacteria. For
example, if we consider E. coli adsorbing bacteriophage T4 and set Rcell = 0.35\mu m,
Rreac = 0.1\mu m [94], and Dsurf = 0.5\mu m2/s, then R2Drot/D3d \approx 0.28, Dsurf/D3d \approx 
0.16, and \lambda \approx 1.20.

6.3. Comparison to Zwanzig correction [97]. In the subsections above, we
found that the impact of rotational and surface diffusion on association rates in certain
biological scenarios can range from less than one percent to tens of percentage points.
To put these results in context, we compare them to a well-known correction to the
Berg and Purcell rate due to Zwanzig [97].

In [69], Northrup compared the Berg and Purcell [11] approximation Jbp =
Jmax

\varepsilon N
\varepsilon N+\pi to Brownian dynamics simulations and found that Jbp underestimated

the flux by approximately 5\% for N = 256 and \varepsilon = 0.0628. Motivated by this dis-
crepancy between numerical simulations and the formula Jbp, Zwanzig [97] postulated
the following approximation to the flux based on an effective medium argument:

Jzw := Jmax
\varepsilon N

\varepsilon N + (1 - f)\pi 
, f := N\varepsilon 2/4.(59)

The expression Jzw agreed with the simulations of [69] to experimental error [97].
How significant is this correction and how does the significance depend on param-

eters? The percentage difference between Jbp and Jzw is

Jzw  - Jbp
Jzw

=
N\pi \varepsilon 2

4N\varepsilon + 4\pi 
\leq lim

N\rightarrow \infty 

N\pi \varepsilon 2

4N\varepsilon + 4\pi 
= \varepsilon 

\pi 

4
.(60)

For the choice \varepsilon = 0.0628 taken in [69], this difference is \varepsilon \pi /4 \approx 0.05, which matches
the 5\% difference between Jbp and the simulations in [69]. As is apparent from
(60), this difference vanishes as \varepsilon \rightarrow 0. Indeed, in Berg and Purcell's application to
bacteriophage adsorption [11], they took \varepsilon = 0.0065, which implies that the percentage
difference between Jbp and Jzw is at most one-half of one percentage point.
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7. Discussion. In closing, we discuss our results in the context of prior work.
Our result in (1) generalizes the Berg and Purcell [11] result in (7) to include receptor
surface diffusion and rotational diffusion. A lot of very interesting work has been done
to modify the Berg and Purcell result in (7) to account for details such as receptor
competition and cell curvature [8, 9, 33, 39, 62, 68, 97]. Most of the prior work uses
heuristic arguments and parameter fits to simulation data.

However, a systematic mathematical approach was recently developed in [62]. In-
deed, our implementation of the method of matched asymptotic analysis was inspired
by [62]. This asymptotic method has been successfully applied in a number of impor-
tant works investigating diffusive search for small targets, including [29, 30, 32, 92, 93].
We note that while these previous works study random processes, the analysis is per-
formed on a deterministic PDE describing a statistic of the process (typically a mean
first passage time). In contrast, the present work analyzes a stochastic PDE.

We are not aware of any prior work that calculates how receptor surface diffusion
influences rates of binding to extracellular reactants. Prior work that sought to incor-
porate cell rotational diffusion includes [12, 78, 85]. These works consider only a single
receptor on the surface of the cell, and they typically study a resulting deterministic
PDE boundary value problem by first applying a quasi-chemical [85] or related [78]
approximation, then use separation of variables to obtain an infinite series solution,
and finally take certain parameter limits to obtain tractable formulas from the infinite
series. For example, formula (18a) in [12] implies that the flux into a single hole of
radius \varepsilon R with \varepsilon \ll 1 is (in our notation)

Jmax

\sqrt{} 
1 +Drot/D3d \varepsilon /(2

\surd 
2).(61)

Hence, our result in (32) (with N = 1, Dsurf = 0) corrects (61) by replacing 1/(2
\surd 
2) \approx 

0.35 by 1/\pi \approx 0.32. Further, (36) generalizes (61) to include N \geq 1 receptors that
diffuse with diffusivity Dsurf \geq 0.

Additional related work includes studies of diffusive search for stochastically gated
targets [3, 21, 22, 24, 74], deterministically moving targets [19, 63, 64, 91], and diffusive
targets [17, 18, 42, 43, 66, 73, 83, 90]. The study of diffusive search for diffusive targets
originally arose in the physics literature [89] as a model of monopole-antimonopole an-
nihilation in the early Universe, but applications to chemical kinetics and condensed
matter physics have driven much of the subsequent development. In contrast to this
previous work on diffusive targets, our work studies interdimensional reactions, as
the reactants diffuse in three dimensions and the receptors diffuse in two dimensions.
This interdimensionality also distinguishes our work from the well-studied two step
``reduction of dimensionality"" process, in which the reactant first nonspecifically ad-
sorbs to the membrane and then undergoes two-dimensional diffusion to reach the
receptor [1, 6, 7, 75, 76].

In addition, the model in the present work resembles several recent biological
models involving the diffusion equation with stochastically switching boundary con-
ditions [60, 23, 57]. These models have been applied to diverse biological applications,
including volume neurotransmission [58, 59], insect respiration [60, 25], and intercel-
lular signaling [20, 26]. In contrast to the present work, these previous models are
piecewise deterministic. That is, these models evolve deterministically between the
discrete times when the boundary conditions randomly change (the boundary con-
ditions typically switch according to a Markov jump process). In the present work,
however, the stochastic boundary conditions evolve continuously according to the
SDEs in (11).
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Finally, the present work could be extended to account for additional aspects of
the membrane environment. For example, not only do receptors diffuse, but their
diffusion coefficient can randomly fluctuate (sometimes due to being trapped in mem-
brane subdomains such as lipid rafts [80, 65]). Two key examples are (i) LFA-1
receptors that alternate between fast and slow diffusive states [34, 81] and (ii) AMPA
receptors on the postsynaptic membrane that alternate within seconds between rapid
diffusive and stationary states [16]. To extend the present work to such heterogeneous
diffusion, one could assume the receptor diffusivity fluctuates between discrete states,
as in [27, 28, 61].

An additional extension would be to receptors that must wait a refractory or
``recharge"" time between successive bindings [46, 47]. That is, while most models
assume that receptors can continuously bind extracellular reactants, in many systems
the receptors are temporarily inactive following each binding. For example, synap-
tic receptors on neural membranes undergo a transitory conformational change after
binding a neurotransmitter, and during this time the receptor is unable to bind ad-
ditional neurotransmitters. A similar scenario occurs, for example, in experiments
where neuroactive compounds are released into extracellular space and bind to recep-
tors on astrocytes [86]. Such a recharge time was recently shown to have a drastic
effect in other contexts [46, 47], and it would be interesting to see how it affects the
association rates studied in the present work.
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