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Protein concentration gradients and switching diffusions
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Morphogen gradients play a vital role in developmental biology by enabling embryonic cells to infer their
spatial location and determine their developmental fate accordingly. The standard mechanism for generating a
morphogen gradient involves a morphogen being produced from a localized source and subsequently degrading.
While this mechanism is effective over the length and time scales of tissue development, it fails over typical
subcellular length scales due to the rapid dissipation of spatial asymmetries. In a recent theoretical work,
we found an alternative mechanism for generating concentration gradients of diffusing molecules, in which
the molecules switch between spatially constant diffusivities at switching rates that depend on the spatial
location of a molecule. Independently, an experimental and computational study later found that Caenorhabditis
elegans zygotes rely on this mechanism for cell polarization. In this paper, we extend our analysis of switching
diffusivities to determine its role in protein concentration gradient formation. In particular, we determine how
switching diffusivities modifies the standard theory and show how space-dependent switching diffusivities can
yield a gradient in the absence of a localized source. Our mathematical analysis yields explicit formulas for
the intracellular concentration gradient which closely match the results of previous experiments and numerical
simulations.
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I. INTRODUCTION

It is well known that at the tissue level protein (morphogen)
concentration gradients play a crucial role in the spatial
regulation of patterning during development [1,2]. That is,
a continuously varying morphogen concentration drives a
corresponding spatially discrete variation in gene expression
through some form of concentration thresholding. The most
common mechanism of morphogen gradient formation is
thought to involve a localized source of protein production
within the embryo, combined with diffusion away from the
source and subsequent degradation [3,4]. Historically speak-
ing, the idea that a reaction-diffusion system can sponta-
neously generate spatiotemporal patterns was first introduced
by Turing in his seminal 1952 paper [5]. Turing considered
the general problem of how organisms develop their structures
during the growth from embryos to adults. He established the
principle that two nonlinearly interacting chemical species
differing significantly in their rates of diffusion can amplify
spatially periodic fluctuations in their concentrations, result-
ing in the formation of a stable periodic pattern. The Turing
mechanism for morphogenesis was subsequently refined by
Gierer and Meinhardt [6], who showed that one way to
generate a Turing instability is to have an antagonistic pair of
molecular species, a slowly diffusing chemical activator and
a quickly diffusing chemical inhibitor, which they applied to
a number of specific biological systems. Over the years, the
range of models and applications of the Turing mechanism
expanded dramatically [7], despite the fact that most exper-
imental findings suggested that morphogenesis was guided
by morphogen concentration gradients. Indeed, for many
years the only direct experimental evidence for Turing-like
patterning of molecular concentrations came from the inor-
ganic Belousov-Zhabotinsky reaction [8]. This changed when

Kondo and Asai demonstrated the occurrence of the Turing
mechanism in studies of coat patterning in angel fish [9].

Advances in live cell imaging and gene knockout protocols
are now allowing for a closer connection between theories of
pattern formation and cell biology, based either on the Tur-
ing mechanism or on the formation of protein concentration
gradients. Indeed, it has been found that pattern formation
can also occur at the intracellular level. However, the standard
mechanisms for generating robust and persistent patterns over
the length scales of tissue development tend to fail over
typical subcellular length scales (0.1–10 μm) [10,11]. This
has generated considerable interest in identifying subcellular
mechanisms for pattern formation. One recent example con-
cerns intracellular protein concentration gradient formation
during the asymmetric division of the Caenorhabditis elegans
(C. elegans) zygote, that is, the fertilized egg cell [12]. In the
experimental study of Wu et al. [12], a pair of RNA-binding
proteins MEX-5 and PIE-1 formed opposing subcellular con-
centration gradients in the absence of a local source due to
a spatially heterogeneous switching process. That is, both
proteins switched between fast-diffusing and slow-diffusing
states on timescales that were much shorter (seconds) than
the timescale of gradient formation (minutes). Moreover, the
switching rates were strongly polarized along the anterior-
posterior axis of the zygote such that fast-diffusing MEX-5
and PIE-1 proteins were approximately symmetrically dis-
tributed, whereas the corresponding slow-diffusing proteins
were highly enriched in the anterior and posterior cytoplasm,
respectively.

We previously proposed a theoretical model of space-
dependent switching diffusivities [13,14], similar to the mech-
anism observed experimentally by Wu et al. [12]. In particular,
we considered a Brownian particle that randomly switches
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FIG. 1. Schematic illustration of heterogeneous diffusion due to
temporal disorder. A Brownian particle randomly switches between
two conformational states n = 0 or 1 having different diffusivities
such that D0 < D1. The switching rates α(x) and β(x) are taken to
be dependent on the spatial position x, 0 � x � L. In this particular
example, the relative rate of switching β(x)/α(x) increases to the
right as indicated by the color gradient. Hence, the particle spends
more time in the slow-diffusing state at the end x = 0 and more time
in the fast-diffusing state at the end x = L.

between two distinct conformational states with different
diffusivities (see Fig. 1). In each state the particle undergoes
normal diffusion (additive noise) so there is no ambiguity
in the interpretation of the noise. Nevertheless, if one takes
the switching rates to depend on spatial position, then in
the fast-switching limit one obtains Brownian motion with
a space-dependent diffusivity of the Ito form. Advances in
single-particle tracking and statistical methods suggest that
particles within the plasma membrane, for example, can
switch between different discrete conformational states with
different diffusivities [15–17]. Such switching could be due
to interactions between proteins and the actin cytoskeleton
[18,19] or due to protein-lipid interactions [20]. However,
until the recent study of Ref. [12], there had been no ex-
perimental evidence that the switching rates can be space
dependent.

In this paper, motivated by the experimental study of
Ref. [12], we extend our previous work on switching diffu-
sivities to analyze its role in the formation of protein concen-
tration gradients. We begin by describing the standard theory
of morphogen gradient formation in Sec. II, and then explore
how this is affected by space-independent switching diffusiv-
ities in Sec. III. We then turn to the alternative mechanism
for gradient formation at the subcellular level, which is based
on space-dependent switching diffusivities in the absence of a
localized source and protein degradation (Sec. IV).

II. PROTEIN CONCENTRATION GRADIENTS WITHOUT
SWITCHING DIFFUSIVITIES

A common model of morphogen gradient formation, as
exemplified by the bicoid (Bcd) gradient of Drosophila, in-
volves a combination of local protein synthesis, diffusion,
and protein degradation [21]. The latter mainly arises via
binding to receptors in the cell membrane, internalization,
and subsequent degradation within a cell. The basic reaction-
diffusion equation takes the form

∂C(x, t )

∂t
= D

∂2C(x, t )

∂x2
− kC(x, t ) + Q(x), (2.1)

where C(x, t ) denotes the concentration of protein, t is the
time from the onset of morphogen synthesis, and x, 0 < x <

L, is the distance from the anterior pole of the embryo whose
size is L. The total rate of degradation is given by k, and
Q(x) represents the spatial distribution of protein synthesis,
which is usually approximated by a decaying exponential
Q(x) = (Q0/λp)e−x/λp . The initial and boundary conditions
are

D
∂C(0, t )

∂x
= 0 = D

∂C(L, t )

∂x
, C(0, x) = 0. (2.2)

Experimentally it is observed that the protein concentration
decays to zero before reaching the posterior end, so the
solution is approximately independent of L. Suppose that
morphogen synthesis is strongly localized at the anterior
end, Q(x) = Q0δ(x), which can be implemented using the
modified boundary condition

−D
∂C(0, t )

∂x
= Q0.

The steady-state solution then takes the form

C∗(x) = C∗(0)

(
ex/λ + e2L/λe−x/λ

e2L/λ − 1

)
, λ =

√
D

k
. (2.3)

The constant C∗(0) can be determined from the boundary con-
dition at x = 0. In particular, when L � λ, the concentration
decays exponentially with the length constant λ,

C∗(x) = Q0λ

D
e−x/λ, λ =

√
D/k. (2.4)

In the case of Bcd, one finds that D ∼ 1 μm2/s, k−1 ∼ 1 h,
and λ ∼ 75 μm. This length constant is too large for sub-
cellular processes [11]. For example, the length of a general
eukaryotic cell is typically around 10 μm in diameter and the
C. elegans embryo is typically 30–40 μm.

An important quantity in characterizing the time-
dependent approach to the steady state of a diffusion process is
the accumulation time. In particular, this is used is to estimate
the time it takes to form a protein concentration gradient
during morphogenesis, which has to be consistent with devel-
opmental timescales. In order to construct the accumulation
time, consider the function

R(x, t ) = 1 − C(x, t )

C∗(x)
, (2.5)

which represents the fractional deviation of the concentration
from the steady state. Assuming that there is no overshoot-
ing, 1 − R(x, t ) is the fraction of the steady-state concen-
tration that has accumulated at x by time t . It follows that
−∂t R(x, t )dt is the fraction accumulated in the interval [t, t +
dt]. The accumulation time is then defined by analogy to mean
first passage times (MFPTs) [22–24]

τ (x) =
∫ ∞

0
t

(
−∂R(x, t )

∂t

)
dt =

∫ ∞

0
R(x, t )dt . (2.6)

032409-2



PROTEIN CONCENTRATION GRADIENTS AND SWITCHING … PHYSICAL REVIEW E 99, 032409 (2019)

Note that a finite accumulation time implies that the steady-
state C∗(x) is a stable solution to Eq. (2.1).

As a simple illustration of calculating τ (x), consider the
classical model of morphogen gradient formation:

∂C(x, t )

∂t
= D

∂2C(x, t )

∂x2
− kC(x, t ), (2.7)

where C(x, t ) denotes the concentration of a protein, t is the
time from the onset of morphogen synthesis, and x, 0 < x <

L, is the distance from the anterior pole of an embryo whose
size is L. The total rate of degradation is given by k. The initial
and boundary conditions are

−D
∂C(0, t )

∂x
= Q0, D

∂C(L, t )

∂x
= 0, C(x, 0) = 0.

(2.8)

The time-dependent solution of Eq. (2.7) for L → ∞ is
given by

C(x, t ) = C∗(x)

[
1 − 1

2
erfc

(√
Dt

λ
− x

2
√

Dt

)
− ex/λ

2
erfc

(√
Dt

λ
+ x

2
√

Dt

)]
,

where erfc(z) is the complementary error function and λ =√
D/k. It follows that

R(x, t ) = 1

2
erfc

(√
Dt

λ
− x

2
√

Dt

)
− ex/λ

2
erfc

(√
Dt

λ
+ x

2
√

Dt

)
and [22]

τ (x) = 1

2k
(1 + x/λ). (2.9)

In the case of Bcd, one finds that if λ ∼ 75 μm and the
most distal region of Bcd expression is at x = 150 μm, then
xmax/λ ≈ 2 and τ (xmax) ≈ 1.5/k. This would be consistent
with the timescale of gradient formation, which is of the order
of an hour.

Summarizing, the standard theory of morphogen gradient
formation involving production at a localized source, diffu-
sion, and degradation can indeed account for the Bcd gradient
of Drosophila and other developmental systems of sufficiently
large spatial scales. In the next section, we consider how
switching diffusivities modifies this theory.

III. SPACE-INDEPENDENT SWITCHING DIFFUSIVITIES

Now suppose that we have a population of diffusing parti-
cles that independently switch between two conformational
states labeled n = 0 or 1 according to a two-state jump

Markov process N (t ) ∈ {0, 1}, with 0
β
�
α

1. The diffusion

coefficient is taken to depend on the conformational state,
that is, D = Dn when N (t ) = n [25–27]. At the population
level we have the densities Cn(x, t ), n = 0 or 1, which evolve

according to

∂C0

∂t
= D0

∂2C0

∂x2
− (β + k)C0 + αC1, (3.1a)

∂C1

∂t
= D1

∂2C1

∂x2
+ βC0 − (α + k)C1, (3.1b)

with

−D0∂xC0(0, t ) = Q0, ∂xC1(0, t ) = 0, (3.1c)

∂xC0(L, t ) = ∂xC1(L, t ) = 0. (3.1d)

We assume that at x = 0 all proteins are produced in the n =
0 state at a rate of Q0. Finally, we take the initial condition
Cn(x, 0) = 0 for all x.

Note that the total amount of protein is independent of α,
β, D0, and D1. To see this, define

T (t ) =
∫ L

0

∑
n

Cn(x, t )dx. (3.2)

Differentiating with respect to time and using Eqs. (3.1a)–
(3.1d) results in

dT

dt
=

∫ L

0

∑
n

Dn
∂2Cn

∂x2
dx − k

∫ L

0

∑
n

Cndx. (3.3)

Enforcing the Neumann boundary conditions for C0 and C1 at
x = 0 and L, leads to the equation

dT

dt
= Q0 − kT, (3.4)

whose solution is T (t ) = Q0(1 − e−kt )/k. This only depends
on the decay rate k and the influx of protein at the left
boundary, given by Q0.

A. Steady-state gradient and accumulation time

We would like to determine how switching diffusivities
affect the accumulation time defined in Sec. II. We proceed
by Laplace transforming Eqs. (3.1a)–(3.1d) with

Ĉn(x, s) =
∫ ∞

0
e−stCn(x, t )dt .

This gives

sĈ0(x, s) = D0
∂2Ĉ0

∂x2
− (β + k)Ĉ0(x, s) + αĈ1(x, s), (3.5a)

sĈ1(x, s) = D1
∂2Ĉ1

∂x2
+ βĈ0(x, s) − (α + k)Ĉ1(x, s), (3.5b)

with Cn(x, 0) = 0, and

−D0∂xĈ0(0, s) = s−1Q0, ∂xĈ1(0, s) = 0, (3.5c)

∂xĈ0(L, s) = ∂xĈ1(L, s) = 0. (3.5d)

For the sake of illustration, suppose D0 = D1 = D and set
C(x, t ) = C0(x, t ) + C1(x, t ). (The case D0 
= D1 is analyzed
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in the Appendix.) Adding Eqs. (3.5a) and (3.5b) gives

D
d2Ĉ

dx2
− (s + k)Ĉ = 0, −D∂xĈ(0, s) = s−1Q0,

∂xĈ(L, s) = 0.

This recovers the Laplace-transformed equations of the non-
switching case. It follows that

Ĉ(x, s) = Q0

sD

1√
(s + k)/D

e
√

(s+k)/D(L−x) + e−√
(s+k)/D(L−x)

e
√

(s+k)/DL − e−√
(s+k)/DL

.

(3.6)

We immediately obtain the steady-state solution

C∗(x) = lim
s→0

sĈ(x, s) = Q0λ

D

cosh([L − x]/λ)

sinh(L/λ)
, (3.7)

which agrees with Eq. (2.3). Setting

F̂ (x, s) = sĈ(x, s)

and Laplace transforming Eq. (2.5) yields

sR̂(x, s) = 1 − F̂ (x, s)

F̂ (x, 0)

and

τ (x) = lim
s→0

R̂(x, s) = lim
s→0

1

s

[
1 − F̂ (x, s)

F̂ (x, 0)

]
= − 1

F̂ (x, 0)

d

ds
F̂ (x, s)

∣∣∣∣
s=0

. (3.8)

Using Eq. (3.6) we obtain the result

τ (x) = 1

2k

[
1 − L − x

λ
tanh([L − x]/λ) + L

λtanh(L/λ)

]
.

(3.9)

Hence, for this particular example the accumulation time is
independent of the switching rate. In particular, we recover
the result (2.9) in the limit L → ∞.

B. Dependence on switching rate

In order to understand the effects of switching diffusivities
on the protein concentration gradient, we need to determine
the corresponding system in the fast-switching limit α, β →
∞ with α/β fixed. The fast-switching limit can be imple-
mented by rescaling the transition rates according to α, β →
α/ε, β/ε, with α, β = O(1), and taking ε → 0. This yields
the following equation for C:

∂C

∂t
= D

∂2C

∂x2
− kC, (3.10)

where

D =
∑

n=0,1

Dnρn, ρ0 = 1 − ρ1 = α

α + β
. (3.11)

The corresponding boundary conditions are

−D∂xC(0, t ) = Q0, ∂xC(L, t ) = 0. (3.12)

Equation (3.7) implies that the steady-state solution in the
fast-switching limit is

C∗(x) = Q0λ

D

cosh([L − x]/λ)

sinh(L/λ)
, λ =

√
D/k. (3.13)

Suppose that we take the baseline parameter values D = 1
μm2/s and k = 10−4 s−1 with a corresponding length con-
stant λ = √

D/k = 100 μm. For the sake of illustration, we
set α = β = k/ε, D1 = D, and D0 = ηD for 0 < η < 1. It fol-
lows that D = (1 + η)D/2. We explore how the concentration
gradient varies with ε and η.

First, since the switching rates are taken to be symmetric,
in the limit η → 1, Eqs. (3.1a) and (3.1b) are identical,
meaning that the equilibrium solution is always identical to
the fast-switching limit given by Eq. (3.7). If we take η =
0.1, however, the convergence to the fast-switching limit is
apparent [Fig. 2(a)]. It is important to note that the fast-
switching limit gives a more uniform protein concentration
gradient than for larger ε, which might not be ideal for setting
up spatial variation. At η = 0.001, this difference is even more
extreme, but the gradient decays so rapidly that there is only
a very narrow region where the protein concentration is high
[Fig. 2(b)]. Taking the diffusivities to be different orders of
magnitude is a way to increase the spatial variation, even in
the case of fast switching. This is illustrated in Fig. 3.

Hence, while the standard theory involving production,
diffusion, and degradation can yield morphogen gradients
(reviewed in Sec. II), we have shown in this section that
switching diffusivities can steepen these gradients. In the next
section, we show that space-dependent switching diffusivities
can yield morphogen gradients in the absence of production
and degradation.

IV. SPACE-DEPENDENT SWITCHING DIFFUSIVITIES

So far we have assumed that the morphogen gradient is rep-
resented by a protein concentration profile, which is produced
by a localized source, diffuses, and is uniformly degraded.
We now turn to an alternative mechanism, which is based
on space-dependent switching diffusivities in the absence of
a localized source or degradation. We recently hypothesized
that space-dependent switching diffusivities could provide a
mechanism for multiplicative noise in the fast-switching limit
[13,14] and developed a mathematical analysis of this process.
Independently, an experimental and computational modeling
study of cell polarization in C. elegans showed how such
a mechanism could lead to the formation of a morphogen
gradient [12]. Here we apply our previous analysis to the latter
process. The new system of equations is

∂C0

∂t
= D0

∂2C0

∂x2
− β(x)C0 + α(x)C1, (4.1a)

∂C1

∂t
= D1

∂2C1

∂x2
+ β(x)C0 − α(x)C1, (4.1b)

with

∂xC0(0, t ) = ∂xC1(0, t ) = 0, ∂xC0(L, t ) = ∂xC1(L, t ) = 0

(4.1c)

and the initial conditions Cn(x, 0) = C∗
n .
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FIG. 2. Comparison of the fast-switching limit to the steady-state solution for various values of ε. (a) η = 0.1 and (b) η = 10−3. Other
parameters are L = 100 μm and Q0 = 5 × 10−3 [C] μm/s.

A. Fast-switching regime

Following our previous work [13,14], we begin by con-
sidering the fast-switching limit α(x), β(x) → ∞. A typical
length of C. elegans is around L = 32 μm and the switch-
ing rates are of the order of 0.1 s−1 [12]. Introducing the
fundamental timescale τ = L2/D with D = 1 μm2/s, we
have τ ∼ 1000 s and thus the switching rates are at least 2
orders of magnitude faster than τ−1. Hence, as in Sec. III,
we rescale the transition rates according to α, β → α/ε, β/ε,
with α, β = O(1). For small but nonzero ε, one can use an
adiabatic approximation to reduce the diffusion Eqs. (4.1a)
and (4.1b) to a corresponding scalar diffusion equation for
the total density C(x, t ) = ∑

n=0,1 Cn(x, t ) [28,29]. The basic
steps are as follows.

First, decompose the density Cn as

Cn(x, t ) = C(x, t )ρn(x) + εwn(x, t ), (4.2)

where
∑

n wn(x, t ) = 0 and

ρ0(x) = α(x)

α(x) + β(x)
, ρ1(x) = 1 − ρ0(x).

0.3

0.4

0

0.5

0.6

0.7

0.8

150 0.80.60.40.2100 0x[μm]

C*(x)

η

FIG. 3. The fast-switching limit as a function of η. Parameters
are L = 100 μm and Q0 = 5 × 10−3 [C] μm/s.

Substituting this decomposition into Eqs. (4.1a) and (4.1b)
and then adding the pair of equations gives

∂C

∂t
= ∂2D(x)C

∂x2
+ ε

∑
n=0,1

Dn
∂2wn

∂x2
, (4.3)

where

D(x) =
∑

n=0,1

Dnρn(x). (4.4)

Next we use Eq. (4.3) to eliminate ∂C/∂t in the expanded ver-
sion of Eqs. (4.1a) and (4.1b). Introducing the asymptotic ex-
pansion wn ∼ w(0)

n + εw(1)
n + O(ε2) and collecting the O(1)

terms then yields an equation for w(0)
n , which has the following

unique solution on imposing the condition
∑

n w(0)
n (x, t ) = 0,

w(0)
n = 1

α(x) + β(x)

[
Dn

∂2ρn(x)C

∂x2
− ρn(x)

∂2D(x)C

∂x2

]
.

(4.5)

Finally, setting wn = w(0)
n + O(ε) in Eq. (4.3) shows that to

O(ε)

∂C

∂t
= ∂2

∂x2
[D(x)C] + ε(D0 − D1)

∂2w
(0)
0

∂x2
. (4.6a)

However, there is one subtle point that needs to be highlighted.
The original system given by Eqs. (4.1a) and (4.1b) involves
two coupled diffusion equations so that at each boundary there
are two boundary conditions, namely zero flux conditions for
C0 and C1. On the other hand, the reduced diffusion equation
(4.6a) for the scalar C = C0 + C1 has a single boundary con-
dition at each end. If we take this to be the linear combination
D0∂xC0 + D1∂xC1 = 0 and substitute the decomposition (4.2),
then we obtain the no-flux conditions

∂x
[
D(x)C(x, t ) + ε(D0 − D1)w(0)

0

]
x=0 = 0, (4.6b)

∂x
[
D(x)C(x, t ) + ε(D0 − D1)w(0)

0

]
x=L = 0. (4.6c)

We thus have a singular perturbation problem, in which the
solution to Eqs. (4.6) represents an outer solution that is
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valid in the bulk of the domain, but has to be matched to
an inner solution at each boundary. (An analogous situation
holds in mathematical models of bidirectional motor transport
[29,30].) We address this issue further below, but first we
focus on the bulk solution in the limit ε → 0.

In the fast-switching limit ε → 0, we have a diffusion
equation with effective space-dependent diffusivity D(x):

∂C

∂t
= ∂2

∂x2
[D(x)C], (4.7)

with no-flux boundary conditions ∂xD(x)C(x, t ) = 0 at x = 0
or L. It is now straightforward to establish that the bulk
solution can take the form of a protein concentration gradient.
The steady-state solution takes the form

C∗(x) = A

D(x)
, (4.8)

with the constant A determined by the normalization condition∫ L

0
C∗(x)dx = L[C∗

0 + C∗
1 ]. (4.9)

Hence,

A = L[C∗
0 + C∗

1 ]

[∫ L

0

dx

D(x)

]−1

. (4.10)

It is clear that regions of slow diffusion will have concentra-
tions higher than those of regions of fast diffusion. Suppose
for the sake of illustration that D0 < D1. This means that
D(x) will be a monotonically increasing function of x if α(x)
is a constant or a decreasing function of x and β(x) is an
increasing function of x; the resulting stationary concentration
will be a monotonically decreasing function of x. This is
illustrated in Sec. IV C.

B. Examples of switching rates

Substituting the switching rates found in Ref. [12] for the
RNA-binding proteins MEX-5 and PIE-1 gives the following
numerical and first-order asymptotics results. The switching
rates are both between 0.1 and 0.8 s−1 at each point in the
domain. The other parameters are given by D0 = 0.1 μm2/s,
D1 = 5 μm2/s, and L = 32 μm, as in Ref. [12]. In both cases,
we approximate the switching rates using piecewise constant
functions. That is, the interval is divided into four subintervals
Ii = [xi, xi+1), i = 0, . . . , 3, with x0 = 0, x1 = 10, x2 = 16,
x3 = 22, and x4 = L such that

αM (x) = aM
i + āM

i (x − xi ) for x ∈ Ii, i = 0, . . . , 3

βM (x) = bM + b̄Mx, x ∈ [0, L], (4.11)

for MEX-5, and

αP(x) = aP
i + āP

i (x − xi ) for x ∈ Ii, i = 0, . . . , 3

βP(x) = bP, x ∈ [0, x1],

βP(x) = bP + b̄P(x − x1), x ∈ [x1, L], (4.12)

for PIE-1. The various coefficients are listed in the tables of
Fig. 4. Note that the first-order asymptotics well approximate
the steady-state concentration since there is already a fast
timescale based on the biological parameters as outlined at

the beginning of this section. This is illustrated in Fig. 4. We
emphasize that our numerical results in Fig. 4 are consistent
with the numerical results of Wu et al. [12], which closely
matched their experimental measurements of protein concen-
trations. Furthermore, all the parameter values are taken from
Ref. [12], which were chosen to match their experimental
results.

C. Boundary layer analysis

In order to solve the steady-state singular perturbation
problem, we introduce an O(

√
ε) boundary layer at x = 0 and

similarly at x = L, which can capture rapid changes in spatial
derivatives. We then construct an inner solution within each
boundary layer that can then be matched to the outer solution
of Eqs. (4.6). For the sake of illustration, we focus on the
boundary layer at x = 0; the analysis for the other boundary
layer is very similar. Introduce the stretched coordinate

X = x√
ε

(4.13)

and series expansions

α(
√

εX ) ∼ α0 + α1
√

εX + O(ε), (4.14a)

β(
√

εX ) ∼ β0 + β1
√

εX + O(ε). (4.14b)

Denote the steady-state inner solution by C∗
in(X ), which is

taken to have the series expansion

C∗
in(X ) ∼ cn,0(X ) + √

εcn,1(X ) + O(ε). (4.14c)

The steady-state version of Eqs. (4.6) yields, to leading order,
the following inner equations on the domain X ∈ [0,∞):

0 = D0
d2c0,0

dX 2
− β0c0,0 + α0c1,0, (4.15a)

0 = D1
d2c1,0

dX 2
+ β0c0,0 − α0c1,0, (4.15b)

with boundary conditions c′
0,0(0) = c′

1,0(0) = 0.

Adding Eqs. (4.15a) and (4.15b) and imposing the bound-
ary conditions shows that

∑
n=0,1 Dncn,0(X ) = �0, where �0

is a constant. Equation (4.15a) can thus be rewritten as

0 = d2c0,0

dX 2
−

(
β0

D0
+ α0

D1

)
c0,0 + α0�0

D0D1
. (4.16)

This has the bounded solution

c0,0(X ) = A0e−γ X + α0�0

D0D1γ
, (4.17)

with

γ =
√

β0

D0
+ α0

D1
=

√
D(0)

D0D1
(α0 + β0). (4.18)

The boundary condition c′
0,0(0) implies that A0 = 0. Carrying

out a similar analysis for c1,0 we deduce that the lowest-order
terms are constants, that is, cn,0(X ) = cn, with

cn = ρn(0)�0

D(0)
.
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FIG. 4. Plot of numerical solution and first-order asymptotics for MEX-5 and PIE-1 spatial switching rates given by Eqs. (4.11) and (4.12),
respectively, with the values of the coefficients listed in the tables. Parameter values are taken from Ref. [12], which were chosen to match
their experimental measurements of protein concentrations.

Proceeding to the next order, we have

β1Xc0 − α1Xc1 = D0
d2c0,1

dX 2
− β0c0,1 + α0c1,1, (4.19a)

−β1Xc0 + α1Xc1 = D1
d2c1,1

dX 2
+ β0c0,1 − α0c1,1, (4.19b)

with boundary conditions c′
0,1(0) = c′

1,1(0) = 0.

Again adding Eqs. (4.19a) and (4.19b) shows that∑
n=0,1 Dncn,1(X ) = �1 for some constant �1. Hence,

Eq. (4.19a) becomes

d2c0,1

dX 2
−

(
β0

D0
+ α0

D1

)
c0,1 + α0�1

D0D1

= [β1ρ0(0) − α1ρ1(0)]
�0X

D0D(0)
. (4.20)

The bounded solutions are

c0,1(X ) = B0e−γ X − D1(β1α0 − α1β0)

(α0 + β0)2

�0X

D(0)2
(4.21)

and, similarly,

c1,1(X ) = B1e−γ X + D0(β1α0 − α1β0)

(α0 + β0)2

�0X

D(0)2
. (4.22)

Without loss of generality we have set �1 = 0. The coeffi-
cients B0 and B1 can be determined in terms of �0 by imposing
the no-flux boundary conditions at X = 0.

Combining our various results and using the definition of
D(x) leads to the following inner solution:

C∗
in(X ) ∼ Be−γ X + �0

(
1

D(0)
− √

ε
XD

′
(0)

D(0)2

)
+ O(ε)

∼ Be−γ X + �0

D(
√

εX )
. (4.23)

The boundary condition dC∗
in(X )/dX = 0 at X = 0 shows

that

B = −�0D
′
(0)

γ D(0)2
. (4.24)

The composite solution then has the form

C∗(x) = A

D(x)
+ √

εBe−γ x/
√

ε, (4.25)

with the matching condition �0 = A.
Performing the same boundary analysis for the boundary

layer at x = L, we find that the composite solution for the
entire domain has the form

C∗(x)= A

D(x)
−√

ε
AD

′
(0)

γ D(0)2
e−γ x/

√
ε +√

ε
AD

′
(L)

μD(L)2
e−μ(L−x)/

√
ε,

(4.26)

where we have defined

μ =
√

β(L)

D0
+ α(L)

D1
=

√
D(L)

D0D1
[α(L) + β(L)]. (4.27)

Note that the correction to the normalization constant A given
in Eq. (4.10) is of O(ε) and hence does not need to be
included here at O(

√
ε). For small ε, these terms result in

an increased accuracy near the boundary by helping enforce
the no-flux boundary conditions in the asymptotic solution.
Figure 5 highlights an example of this improvement.

D. Accumulation time for fast spatial switching

It is also possible to use the bulk equilibrium solution found
from Eq. (4.7) in the limit of fast switching to calculate an
approximation for the accumulation time τ (x). This can be
done even with the presence of spatially dependent switching
rates with a slight modification to the function R(x, t ). Since
the total protein amount is conserved when no-flux boundary
conditions are present, and the initial protein concentration
gradient

C∗
init := C∗

0 + C∗
1 (4.28)

is nonzero, it is inevitable that C∗
init > C∗(x) in some region of

the spatial domain. We therefore define

R(x, t ) = C∗(x) − C(x, t )

C∗(x) − C∗
init

= 1 − C(x, t ) − C∗
init

C∗(x) − C∗
init

. (4.29)
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dashed lines show the increased accuracy achieved by the O(

√
ε)

terms.

Again assuming there is no overshooting, this is the frac-
tional deviation of the concentration from the steady state.
However, it is important to note that there is a slight over-
shooting in the total concentrations of both MEX-5 and PIE-1
near where C∗

init = C∗(x). Since D(x) is monotonic for both
PIE-1 and MEX-5, there is only a single value of x where
this occurs, which is at approximately x = 16 μm for MEX-5
and x = 20 μm for PIE-1 (Fig. 6). However, this issue is not
present farther away from these spatial points, so we focus
on deriving the accumulation time for values of x away from
where C∗(x) = C∗

init.
The accumulation time can be calculated by utilizing the

Laplace transform like before, with the final equation being
given by

τ (x) = −1

C∗(x) − C∗
init

d

ds
F̂ (x, s)

∣∣∣∣
s=0

, (4.30)

where F̂ (x, s) = sĈ(x, s) and thus F̂ (x, 0) = C∗(x). Although
there is no general formula for the time-dependent solution to
Eq. (4.7), we can use the latter to derive a differential equation
for

F̂ 0
s (x) := d

ds
F̂ (x, s)

∣∣∣∣
s=0

. (4.31)

First, Laplace transforming Eq. (4.7) and multiplying both
sides by s results in

∂2D(x)F̂

∂x2
= sF̂ − sC∗

init. (4.32)

Assuming derivatives commute, we can take the derivative
with respect to s, yielding

∂2D(x)F̂s

∂x2
= F̂ + sF̂s − C∗

init. (4.33)

In the limit s → 0+, we have that F̂s exists and is finite;
therefore

lim
s→0+

sF̂s = 0. (4.34)
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FIG. 6. (a) MEX-5 concentration over space and time. (b) MEX-
5 concentration plotted versus time t at x = 16 μm showing slight
overshooting. Initial state concentrations are C∗

0 = 0.75 and C∗
1 =

0.25.

We now have an equation,

∂2D(x)F̂ 0
s

∂x2
= C∗(x) − C∗

init, (4.35a)

that describes F̂ 0
s in terms of the equilibrium protein concen-

tration gradient and the initial distribution of protein. Using a
similar approach combined with the fact that total protein is
conserved, we derive the boundary conditions

∂x
[
D(x)F̂ 0

s (x)
]

x=0 = 0, (4.35b)

∂x
[
D(x)F̂ 0

s (x)
]

x=L = 0, (4.35c)

and a homogenization condition,∫ L

0
F̂ 0

s (x)dx = 0. (4.35d)

With Eqs. (4.35a)–(4.35c), we find

F̂ 0
s (x) = 1

D(x)

∫ x

0

∫ x′

0
[C∗(x′′) − C∗

init]dx′′dx′ − F ∗

D(x)
,

(4.36)
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with the constant F ∗ determined by Eq. (4.35d),

F ∗ = A

LC∗
init

∫ L

0
D(x)

−1

[∫ x∫ x′

[C∗(x′′) − C∗
init]dx′′dx′

]
dx,

(4.37)

and A is defined in Eq. (4.10). Finally, from Eq. (4.30), the
accumulation time is given by

τ (x) = F ∗

A − C∗
initD(x)

− 1

A − C∗
initD(x)

×
∫ x∫ x′

[C∗(x′′) − C∗
init]dx′′dx′. (4.38)

The same formula holds true if the initial concentration
C∗

init is taken to be spatially varying rather than constant across
the domain. Note that in either case the accumulation time is
singular where A = C∗

initD(x) or equivalently where C∗(x) =
C∗

init. If C(x∗, t ) = C∗
init for all time t at some location x = x∗,

then the accumulation time τ (x∗) will be zero; however, if
there is some slight variation in the concentration over time
at x = x∗, then τ (x) will be undefined.

Using numerical integration to calculate Eq. (4.38), we find
that for MEX-5

τM (2) = 72 s, τM (10) = 39 s

τM (25) = 58 s, τM (30) = 42 s,

and for PIE-1

τP(2) = 57 s, τP(10) = 53 s,

τP(25) = 55 s, τP(30) = 57 s.

In both cases, we see that the bulk forms on a timescale
of about a minute, regardless of the spatial location. This is
consistent with intracellular concentration gradients, which
tend to form on a timescale of a few minutes. Therefore, our
results indicate that space-dependent switching diffusivities
can indeed yield morphogen gradients at both the temporal
and the spatial scales relevant to subcellular processes.

V. DISCUSSION

In this paper we studied the role of switching diffusivities
in the formation of protein concentration gradients. We as-
sumed that each protein switches between two conformational
states with distinct spatially constant diffusivities, and we took
the switching rates to be space-dependent and faster than the
rate of gradient formation. In the fast-switching limit this
generated an effective space-dependent diffusivity of the Ito
form. We then derived explicit expressions for the steady-
state intracellular concentration gradient and the associated
accumulation time and showed how these expressions agree
with recent experimental and computational results concern-
ing embryogenesis in C. elegans.

Although we focused on one specific application in devel-
opmental biology, the underlying mechanism raises a number
of more general issues concerning heterogeneous diffusion in
cells and its role in gradient formation. First, it is important
to note that the generation of a protein concentration gra-
dient in the absence of a localized source does not require

space-dependent switching diffusivities; the essential ingre-
dient is an effective space-dependent diffusivity as expressed
by Eq. (4.7). Space-dependent switching is one mechanism
for generating such a diffusivity, at least in the fast-switching
limit. An alternative to this kinetic mechanism is a static
mechanism whereby a protein exists in a single diffusive state
at a given spatial position, but the diffusion coefficient spa-
tially varies due to heterogeneities in the surrounding cellular
medium [31–34]. Advances in single-particle tracking exper-
iments and data analysis techniques such as hidden Markov
models [17] now provide a framework for distinguishing
between kinetic and static cases. Irrespective of the specific
source of heterogeneity, there are two additional properties
of the diffusive transport that have to be considered: (i) the
appropriate interpretation of the nonlinear Brownian motion
(multiplicative noise), and (ii) the underlying biophysical
mechanism for generating a spatial gradient in the diffusivity.

The interpretation of a stochastic differential equation with
a space-dependent diffusion term is a longstanding and re-
cently revisited [35–37] issue in stochastic calculus. The most
common interpretations are Itô, Stratonovich, and kinetic
(also called isothermal or Hänggi-Klimontovich), and each
arises in different physical scenarios. For example, taking
the white noise limit of a particle driven by colored noise
yields the Stratonovich interpretation [38], whereas consis-
tency with equilibrium statistical physics yields the kinetic
interpretation. Further, the kinetic interpretation is the natural
framework of Fick’s law, and recent experiments indicate its
relevance for particles diffusing near a wall [39–41]. In this
paper and previous work [13], we have shown that, when
a diffusing particle switches between two or more spatially
constant diffusivities with fast, space-dependent switching
rates, this leads to an effective space-dependent diffusivity of
the Ito form [see Eq. (4.7)]. However, it is also possible to
generate other forms of multiplicative noise by considering
a colored noise process with switching diffusivities, and tak-
ing the white noise and fast-switching limits with different
scalings [14]. The nature of the multiplicative noise is critical
to analyzing protein concentration gradient formation. For
example, if the multiplicative noise were of the kinetic form,
the concentration C(x, t ) would satisfy a diffusion equation of
the form

∂C

∂t
= ∂

∂x

(
D(x)

∂

∂x
C

)
. (5.1)

The distinction between Eqs. (4.7) and (5.1) is crucial be-
cause steady-state solutions to Eq. (4.7) are proportional to
[D(x)]−1, whereas steady state solutions to Eq. (5.1) are
constant in space. That is, there would be no concentration
gradient if the multiplicative noise were kinetic.

Even if the spatially heterogeneous diffusion process
evolves according to the Ito interpretation, a protein concen-
tration gradient will only form if there is a corresponding
gradient in the rate of diffusion. Therefore, the more general
applicability of the mechanism analyzed in this paper will
depend on identifying biophysical processes that support a
monotonic spatial variation in the effective diffusivity. Here
we briefly describe the particular processes thought to hold in
the case of C. elegans embryogenesis [12]. Current evidence
suggests MEX-5 diffusivity is controlled by differences in the
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distribution of kinases and phosphotases along the anterior-
posterior axis of the zygote. That is, so-called PAR protein ki-
nases in the posterior membrane locally phosphorylate MEX-
5, which is then dephosphorylated throughout the cytoplasm
by the phosphotase PP2A. The spatial segregation of opposing
kinases and phosphatases thus generates a gradient in the
phosphorylation state of MEX-5 [42], which is thought to
produce local differences in the kinetics of binding or dissoci-
ation of MEX-5 from a slow-diffusing substrate, resulting in
a corresponding gradient in the effective rate of diffusion. A
second phosphorylation cycle operating from the anterior end
is likely to be the source of differential diffusion in the case
of PIE-1. Since intracellular gradients in the phosphorylation

state of a protein are known to play a role in a wide range
of cellular processes, including cell division, polarity, and
mitotic spindle dynamics [10,11], one might expect there to
be other examples where such gradients target the diffusion
state of a downstream protein.
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APPENDIX: STEADY-STATE GRADIENT AND ACCUMULATION TIME (D0 �= D1)

Here we extend the calculation of Sec. III A to the case D0 
= D1. It is convenient to rewrite Eqs. (3.5a) and (3.5b) as a
second-order system:

∂2

∂x2

(
Ĉ0

Ĉ1

)
=

(
(β + k + s)/D0 −α/D0

−β/D1 (α + k + s)/D1

)(
Ĉ0

Ĉ1

)
. (A1)

Define the eigenvalues and eigenvectors of the coefficient matrix by μ2
±(s) and �v±(s), respectively, where

μ2
±(s) = γ1(s) + γ2(s)

2
± 1

2

√
[γ1(s) − γ2(s)]2 − 4η, (A2)

�v±(s) =
(

1

v±(s)

)
, (A3)

where for convenience γ , μ, and v± are defined as

γ1(s) = α + k + s

D1
, γ2(s) = β + k + s

D0
, η = αβ

D0D1
, v±(s) = D0

α
[γ2(s) − μ2

±(s)].

We have written the eigenvalues as squares since the solution of the second-order system will depend on μ±.
The general solution to the above system with boundary conditions (3.5c)–(3.5d) is then(

Ĉ0(x, s)

Ĉ1(x, s)

)
= αQ0

sD2
0[μ2+(s) − μ2−(s)]

[
v−(s)

μ+(s)

cosh{μ+(s)[L − x]}
sinh[μ+(s)L]

�v+(s) − v+(s)

μ−(s)

cosh{μ−(s)[L − x]}
sinh[μ−(s)L]

�v−(s)

]
. (A4)

Note that μ± is always a positive real number for α, β, D0, D1, k > 0. We can now calculate the steady-state concentration,

C∗(x) = lim
s→0

s[Ĉ0(x, s) + Ĉ1(x, s)]

= αQ0

D2
0[μ2+(0) − μ2−(0)]

[
[1 + v+(0)]v−(0)

μ+(0)

cosh{μ+(0)[L − x]}
sinh[μ+(0)L]

− [1 + v−(0)]v+(0)

μ−(0)

cosh{μ−(0)[L − x]}
sinh[μ−(0)L]

]
, (A5)

and the accumulation time τ (x) using Eq. (3.8). Note that if D0 = D1 = D then μ+(0) = √
(α + β + k)/D, μ−(0) = √

k/D =
λ−1, v+(s) = −1, v−(s) = β/α, and we recover Eq. (3.7).
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