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A PROBABILISTIC ANALYSIS OF VOLUME TRANSMISSION IN
THE BRAIN∗

SEAN D. LAWLEY†

Abstract. Volume transmission is a fundamental neural communication mechanism in which
neurons in one brain nucleus modulate the neurotransmitter concentration in the extracellular space
of a second nucleus. In this paper, we formulate and analyze a mathematical model of volume
transmission to calculate the neurotransmitter concentration in the extracellular space. Our model
consists of the diffusion equation in a bounded two- or three-dimensional domain that contains a
set of interior holes that randomly switch between being either sources or sinks. The interior holes
represent nerve varicosities that are sources of neurotransmitter when firing an action potential
and are sinks otherwise. To analyze this random partial differential equation, we show that each
realization of its solution can be represented as a certain expected local time of a Brownian particle
in a corresponding realization of a random environment. Using this representation, we prove two
surprising results. First, the expected neurotransmitter concentration is approximately constant
across the extracellular space. Second, by computing an explicit formula for this constant, we find
that it depends on very few details in the problem. In particular, this constant does not depend on
the number or arrangement of nerve varicosities, the geometry or size of the extracellular space, or
firing correlations between neurons. The biological implications of these results will be explored in a
forthcoming paper.
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1. Introduction. Classical one-to-one synaptic transmission is a fundamental
mechanism by which neurons convey information. In synaptic transmission, a neuron
fires an action potential to convey an electrical signal to an adjacent neuron. Math-
ematical analysis of this mode of neural communication is one of the best examples
of mathematics providing deep biological insight [21, 39]. In addition, modeling this
neural process has benefited the field of mathematics, having stimulated a tremendous
amount of dynamical systems theory (see [17] and the references therein).

But in addition to synaptic transmission, there is another fundamental neural
communication mechanism known as volume transmission [3, 18, 19, 20, 38]. In vol-
ume transmission, sets of neurons project to a distant brain volume and when they
fire they increase the neurotransmitter concentration in the extracellular space in the
distant volume [20]. Volume transmission is also called neuromodulation because it
modulates synaptic transmission by other neurons or synapses in the projection region.
Examples of volume transmission include the dopamine projection from the substan-
tia nigra to the striatum [13], the serotonin projection from the dorsal raphe nucleus
to the striatum [4, 5], and the norepinephrine projection from the locus coeruleus to
the cortex [20]. This mechanism is critical to the sleep/wake cycle, motor control, and
treating Parkinson’s disease and various psychiatric disorders [20]. Despite its biolog-
ical importance, very little mathematics has been applied to volume transmission.
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Fig. 1. Model schematic. The grey region, U ⊂ R
3, contains N nerve varicosities, Vn ⊂ U ,

n = 1, . . . , N , depicted by small blue spheres. The neurotransmitter concentration, u(x, t), satisfies

the diffusion equation in the extracellular space, E = U\∪N
n=1Vn, with boundary conditions at

nerve varicosities that randomly switch between absorption and flux into the space, corresponding to
neurons that switch between quiescent and firing states. A no flux condition is imposed at the outer
boundary.

In this paper, we propose and analyze a mathematical model of volume trans-
mission. Consider a collection of neurons that project to a distant volume where
they release neurotransmitter through varicosities in the extracellular space. Each
nerve varicosity in the projection region is a source of neurotransmitter when the
neuron fires and is a sink for neurotransmitter when the neuron is not firing because
neurotransmitter is taken back into the varicosity (see Figure 1). Given neural fir-
ing statistics, what is the average neurotransmitter concentration in the extracellular
space? How does this average depend on spatial location, and the many parameters
in the problem such as amount of neurotransmitter released when firing, the number
of nerve varicosities, the arrangement of nerve varicosities, the size and geometry of
the extracellular space, the neurotransmitter diffusion coefficient, etc.?

We answer these questions in the case that the size of nerve varicosities is small
compared to the distance between nerve varicosities (see the discussion for the bi-
ological justification of this parameter regime). In this case, we prove that the ex-
pected neurotransmitter concentration is approximately constant across the extracel-
lular space. Furthermore, we compute an explicit formula for this constant, and our
formula shows that it depends on very few details in the problem. In particular, this
constant does not depend on the number or arrangement of nerve varicosities, the
geometry or size of the extracellular space, or firing correlations between neurons.
The biological implications of these results will be explored in a forthcoming paper.

Mathematically, our model consists of the diffusion equation in a bounded two- or
three-dimensional domain that contains a set of interior holes that randomly switch
between being either sources or sinks. To analyze this random partial differential
equation (PDE), we show that each realization of its solution can be represented as a
certain expected local time of a Brownian particle in a corresponding realization of a
random environment. This probabilistic particle perspective is the key that allows us
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to show that the expected random solution is approximately constant in space and to
compute this constant.

We now comment on how this investigation relates to previous work. In [24],
we used the mathematical methods developed in [26, 9, 23] to prove that the ex-
pected neurotransmitter concentration is exactly constant in one space dimension.
In order to analyze the higher-dimensional problem in this paper, we introduce a
local time representation of the solution to the random PDE. Our local time analy-
sis in section 4.3 gives a probabilisitic interpretation of matched asymptotic analysis
of elliptic and parabolic PDEs [15, 27, 36] (see Remark 17). More broadly, this in-
vestigation adds to the growing body of work on diffusion in random environments
[25, 10, 6, 2, 11, 12] that has been driven by biological applications. Such processes
combine two levels of randomness: Brownian motion at the individual particle level
with a random environment.

The rest of the paper is organized as follows. In section 2, we briefly describe our
model and give our main results. In section 3, we formulate a dimensionless version of
our model precisely and prove that the neurotransmitter concentration (the solution
to a random PDE) can be represented as a certain expected local time of a Brownian
particle in a random environment (Theorems 1 and 3). In section 4, we use this
local time representation to investigate the expected neurotransmitter concentration
(Theorems 5, 6, and 15). We conclude by discussing parameter estimates from the
neuroscience literature, higher order neurotransmitter statistics (such as variance),
and future work. An appendix collects the proofs of several lemmas.

2. Basic problem setup and main results. Suppose u(x, t) satisfies the dif-
fusion equation

∂u

∂t
= DΔu, x ∈ E, t > 0,

where u(x, t) is the concentration of some neurotransmitter in the extracellular space
E ⊂ R

d (with d = 2 or 3) in some region of the brain. We suppose that a collection
of neurons project to this region, and thus the domain E contains N holes in its
interior, which represent the corresponding nerve varicosities; see Figure 1 (these are
not the varicosities that occur in injured axons, also known as focal axonal swellings
[28, 29, 30]). We assume that each varicosity is a ball centered at a point xn ∈ E.

Each of the neurons fires action potentials and thus switches between a quies-
cent state and a firing state. We model neuron firing as a stochastic process, and we
allow the neurons to fire synchronously, independently, or with some nontrivial corre-
lations. When a neuron is firing, it releases neurotransmitter. When a neuron is not
firing (quiescent), it absorbs neurotransmitter. Thus, we impose randomly switching
boundary conditions at each nerve varicosity,

u(x, t) = 0, x ∈ ∂Vn, if neuron n is quiescent at time t,

D ∂
∂νu(x, t) = c > 0, x ∈ ∂Vn, if neuron n is firing at time t,

where ∂Vn is the boundary of the nth nerve varicosity and ν is the outward pointing
unit normal vector. We suppose that neurotransmitter cannot escape the region
through the outer boundary, and so we impose a no flux boundary condition there,
∂
∂νu(x, t) = 0, if x ∈ ∂E\ ∪N

n=1 ∂Vn.
We thus have the diffusion equation with boundary conditions at interior holes

that randomly switch between being sinks and sources. In this paper, we prove that
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the solution, u(x, t), to this random PDE is a certain expected local time of a Brownian
particle in a random environment (see Theorem 1 for a precise statement). The local
time of a particle is the amount of time that the particle spends on a boundary.1

Using this representation, we prove that the large time mean, limt→∞ E[u(x, t)],
exists and investigate its behavior in the case that the nerve varicosities are small
compared to the distance between nerve varicosities (see the discussion for the bio-
logical justification of this parameter regime). That is, if R = (R1, . . . , RN ) are the
radii of the nerve varicosities and l > 0 characterizes the distance between varicosities,
then we introduce a small dimensionless parameter, ε = 1

N

∑N
n=1 Rn/l > 0. If neuron

firing is controlled by an irreducible Markov process, J(t) ∈ {0, 1}N , then

lim
t→∞E[u(x, t)] ∼ κ

c

D
, as ε → 0,(1)

where the constant κ is independent of x and depends on very few of the details in
the problem. Throughout this paper, “f ∼ h as ε → 0” means f/h → 1 as ε → 0.

If each component Jn of J is itself a Markov process with invariant measure,

P(Jn(0) = 0) = ρ
(n)
0 and P(Jn(0) = 1) = ρ

(n)
1 , then we compute κ explicitly and find

κ(d, ρ,R) =

∑N
n=1 ρ

(n)
1 Rngd(Rn)∑N

n=1 ρ
(n)
0 Rn

,

where gd depends on the spatial dimension d,

gd(R) =

{
−R logR if d = 2,

R if d = 3.
(2)

Hence, if all the varicosities have the same radii and same invariant measure (Rn = R

and ρ
(n)
1 = ρ1 = 1− ρ0 for all n), then

κ(d, ρ1, R) = gd(R)
ρ1
ρ0

.

Thus, κ depends only on (1) the spatial dimension, (2) the proportion of time
each neuron is firing, and (3) the nerve varicosity radii. In particular, κ does not
depend on (1) the spatial location, x ∈ E, (2) the number of varicosities, N , (3) the
location of the varicosities, {x1, . . . , xN} ∈ E, (4) the size or shape of the extracellular
space, E, or (5) any possible correlations between components of J . Thus, the mean
neurotransmitter concentration is approximately constant in space and this constant
is independent of much of the geometry and other details in the problem. In fact, the
problem of N varicosities arranged arbitrarily in a general domain becomes equivalent
to the case of a single varicosity placed in the center of a spherical domain. Figure 2
illustrates this result.

3. The neurotransmitter concentration is an expected local time in a
random environment.

3.1. Setup and assumptions. We now give a precise and dimensionless version
of the model described in section 2. For dimension d ∈ {2, 3}, let U ⊂ R

d be open,
connected, and bounded with a C∞ boundary, ∂U . Let

Vn := {x ∈ U : |x− xn| < εrn}, n ∈ {1, . . . , N},
1For more information on local time, see sections I.11–I.12 in [1] or Chapter 6 in [22].
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≈

Fig. 2. If the nerve varicosities are small, then Theorem 15 gives that the problem on the left
with N varicosities arranged arbitrarily in a general domain is equivalent to the problem on the right
of a single varicosity placed in the center of a spherical domain. For the problem on the right, the
expected neurotransmitter concentration is exactly constant (even for non-Markovian neural firing)
and we can compute this constant exactly if the firing is Markovian (see Theorem 5 and Corollary
7).

be N balls of dimensionless radius εrn > 0 centered at {x1, . . . , xN} ⊂ U in order to
represent N nerve varicosities. Let ε > 0 be sufficiently small so that Vn ∩ Vm = ∅ if

n 
= m and Vn ∩ ∂U = ∅ for each n. Let E := U\∪N
n=1Vn be the extracellular space.

To describe the state of each neuron (either firing or quiescent), let {J(t)}t∈R be
a stochastic process on a probability space (Ω,F ,P) taking values in {0, 1}N , where
Jn(t) ∈ {0, 1} denotes its nth component for n ∈ {1, . . . , N}. We assume that J
takes only finitely many jumps in any bounded time interval. We assume that J is
stationary in the sense that for each finite collection {Aj}kj=1 with Aj ∈ {0, 1}N , and

times {tj}kj=1, we have that

P
( ∩k

j=1 {J(tj) ∈ Aj}
)
= P

( ∩k
j=1 {J(tj + T ) ∈ Aj}

)
for all T ∈ R.(3)

Further, we assume J satisfies the following mixing condition: there exists n∗ ∈
{1, . . . , N}, σ > 0, and q ∈ (0, 1) such that if {tj}kj=1 satisfy |ti− tj| > σ if i 
= j, then

P
( ∩k

j=1 {Jn∗(tj) = 1}) ≤ qk.(4)

We note that (4) is satisfied if J is (for example) an irreducible Markov process.
For almost all realizations of J , suppose {u(x, t)}t≥0 is the L2(E)-valued stochas-

tic process that satisfies the diffusion equation in E with a zero initial condition and
a no flux condition at the outer boundary,

∂u

∂t
= Δu, x ∈ E, t > 0,(5)

u = 0, x ∈ E, t = 0,(6)

∂u

∂ν
= 0, x ∈ ∂U,(7)

and boundary conditions at each Vn that switch according to Jn(t),

u = 0, x ∈ ∂Vn, if Jn(t) = 0,(8)

∂u

∂ν
= 1, x ∈ ∂Vn, if Jn(t) = 1.(9)
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Here, ν(x) denotes the outward pointing unit normal vector at x ∈ ∂E. To get
this dimensionless version of the model in section 2, one rescales time, space, and
concentration, D

l2 t,
1
l x, and ldu, for some length scale, l > 0. Under this rescaling,

the inhomogeneous flux condition becomes ld+1 c
D , but we have taken this to be 1 in

(9) without loss of generality.
On the same probability space (Ω,F ,P), let {X(t)}t≥0 be the path of a particle

diffusing in E with reflecting boundary conditions,

dX(t) =
√
2 dW (t)− ν(X(t)) (dL̃(t) + dL(t)), X(t) ∈ E.(10)

Here, W (t) is a d-dimensional Brownian motion, L̃(t) is the local time of X(t) on
∂U , and L(t) is the local time of X(t) on ∪N

n=1∂Vn. That is, L̃(t) and L(t) are
nondecreasing continuous processes that increase only when X(t) ∈ ∂U and X(t) ∈
∪N
n=1∂Vn, respectively. We assume that X and J are independent.

3.2. Random PDE solution is an expected local time in a random en-
vironment. The following theorem relates the local time, L, of the particle, X , to
the solution, u(x, t), of the random PDE in (5)–(9). In the following, let Ex denote
the expected value conditioned on X(0) = x ∈ E and Ex[ · |J ] denote the expected
value conditioned on X(0) = x ∈ E and a realization J = {J(t)}t∈R. We also use ∧
to denote the minimum of two real numbers, i.e., a ∧ b = min{a, b}.

Theorem 1. For T ≥ 0, let τ(T ) be the first passage time of X(t) to some ∂Vn

when Jn(T − t) = 0,

τ(T ) := inf{t > 0 : (X(t) ∈ ∂Vn) and (Jn(T − t) = 0) for some n ∈ {1, . . . , N}}.
(11)

Then for x ∈ E and almost all realizations of J , we have that

u(x, T ) = Ex[L(τ(T ) ∧ T )|J ].(12)

Remark 2. We emphasize that there are two sources of randomness in (12): the
path of the particle X , and the switching environment, J . Equation (12) is an average
over paths of the particle for a given realization of the environment. Thus, (12) is a
function of the realization J .

Proof. By standard properties of the diffusion equation, for almost all realizations
of J , we have that u(x, T − t) is smooth in x and t for t away from jump times of
{J(T − t)}0≤t≤T . Letting 0 = t0 < t1 < · · · < tK−1 < tK = T be all such jump times
for a realization J , we apply Ito’s formula2 to obtain

K∑
k=1

(
u(X(τ(T ) ∧ tk), T − τ(T ) ∧ t−k )− u(X(τ(T ) ∧ tk−1), T − τ(T ) ∧ t+k−1)

)

= −
K∑

k=1

∫ τ(T )∧tk

τ(T )∧tk−1

(∇u · ν)(X(s)) dL(s) +M

= −L(τ(T ) ∧ T ) +M,

(13)

where M satisfies Ex[M |J ] = 0. We have used (5) and (7) in the first equality in (13),
and we have used (9) and (11) in the second equality.

2Ito’s formula is a fundamental result in stochastic analysis and is the stochastic counterpart to
the chain rule [33].
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Since u(x, t) is continuous in t if x /∈ ∪N
n=1∂Vn, and since the probability that

X(tk) ∈ ∪N
n=1∂Vn is zero for k ∈ {0, 1, . . . ,K}, taking the expectation of (13) over

realizations of the particle X yields

Ex[u(X(τ(T ) ∧ T ), T − τ(T ) ∧ T )|J ]− u(x, T ) = −Ex[L(τ(T ) ∧ T )|J ].(14)

Using (6), (8), and (11), we have that (14) simplifies to (12).

In general, the large T limit of (12) does not exist. However, we can average (12)
over realizations of J and then take the large T limit. In light of (3), we henceforth
write τ instead of τ(T ) under expectations not conditioned on a realization of J .

Theorem 3. For each x ∈ E, we have that

lim
T→∞

E[u(x, T )] = Ex[L(τ)] < ∞.

Before proving this theorem, we need the following lemma (see the appendix for
the proof of the lemma).

Lemma 4. We have that supx∈E Ex[τ ] < ∞.

Proof of Theorem 3. By Lemma 4, we have that τ(0) is finite almost surely. Thus,
limT→∞ τ(0) ∧ T = τ(0) almost surely. Since the local time L(t) is continuous, we
have that limT→∞ L(τ(0) ∧ T ) = L(τ(0)) almost surely. Furthermore, since L(t) is
nondecreasing, the monotone convergence theorem yields

lim
T→∞

Ex[L(τ(0) ∧ T )] = Ex[L(τ(0))].(15)

Combining (15) with (12) and the fact that Ex[L(τ(0)∧T )] = Ex[L(τ(T )∧T )] by (3)
completes the proof.

4. Mean neurotransmitter.

4.1. Exactly constant in simple geometries. Before moving to general do-
mains with an arbitrary number of nerve varicosities in section 4.3, we first consider
the case of a single varicosity located in the center of a radially symmetric domain.
Though this may seem like a very special case at first, we show in section 4.3 that all
cases reduce to this one if the nerve varicosities are small.

In light of Theorem 3, we easily obtain the following theorem.

Theorem 5. Let U be an open ball of radius δ > 0 with an open ball, V1, of
radius ε ∈ (0, δ) located at its center:

U := {x ∈ R
d : |x| < δ} and V1 := {x ∈ R

d : |x| < ε}.

Then limT→∞ E[u(x, T )] is independent of x ∈ U\V1.

Proof. The theorem follows immediately from Theorem 3, the strong Markov
property, and the fact that L(t) only increases with |X(t)| = ε.

4.2. A boundary value problem if switching is Markovian. If the jump
process, J , is an irreducible Markov process, then we can write down the PDE bound-
ary value problem that the mean neurotransmitter satisfies. For notational ease, let
J index a partition, {Aj}j∈J , of the state space of J with

P(J(0) = Aj) > 0 for each j ∈ J and P(J(0) ∈ ∪j∈JAj) = 1.
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Note that the cardinality of J satisfies 2 ≤ |J | ≤ 2N . Let ρ ∈ R
|J | denote the

invariant measure of J so that its jth component gives

ρj = P(J(0) = Aj) for j ∈ J .

In particular, if Q ∈ R
|J |×|J | denotes the generator matrix of J , then QTρ = 0, where

QT is the transpose of Q. Recall that the generator Q is the |J | × |J | matrix with
nonnegative off diagonal entries Q(i, j) ≥ 0 giving the jump rate from state i ∈ |J |
to j ∈ |J | [32]. The diagonal entries of Q are chosen so that Q has zero row sums.

Theorem 6. Let J be an irreducible Markov process with generator Q ∈ R
|J |×|J |.

Suppose v : E �→ R
|J | is a vector valued function that satisfies

0 = Δv+QTv, x ∈ E,(16)

and each component, vj satisfies a reflecting boundary condition at the outer boundary,

∂vj
∂ν

= 0, x ∈ ∂U, j ∈ J ,(17)

and boundary conditions at nerve varicosities,

vj = 0, x ∈ ∂Vn, if Jn = 0 when J is in state j ∈ J ,(18)

∂vj
∂ν

= ρj , x ∈ ∂Vn, if Jn = 1 when J is in state j ∈ J .(19)

Then for each x ∈ E we have that

lim
T→∞

E[u(x, T )] =
∑
j∈J

vj(x).

Proof. Let w(x) ∈ R
|J | be defined by its jth component

wj(x) =
1

ρj
vj(x), j ∈ J .(20)

If Q̃ ∈ R
|J |×|J | denotes the generator of the time reversal of J , then its entries are

related to the entries of Q by ρjQ̃(j, i) = ρiQ(i, j) (see, for example, section 3.7 in
[32]). It is thus immediate that w satisfies the same boundary value problem as v,

but with Q̃ replacing QT in (16), and 1 replacing ρj in (19).
Let I(t) = J(−t) denote the time reversal of J . Let X be as in (10) and τ(0) be

as in (11). Denote wj(x) by w(x, j) and let Ex,j denote expectation conditioned on
X(0) = x and I(0) = j. By the generalized Ito formula,3 we have that

Ex,j [w(X(t ∧ τ(0)), I(t ∧ τ(0)))] − w(x, j)

= Ex,j

[∫ t∧τ(0)

0

[
Δw(X(s), I(s)) +

∑
i∈J

Q̃(I(s), i)w(X(s), i)
]
ds

]

− Ex,j

[ ∫ t∧τ(0)

0

∂νw(X(s), I(s)) (dL(s) + dL0(s))

]
.

(21)

3Ito’s formula is a fundamental result in stochastic analysis and is the stochastic counterpart to
the chain rule [33]. Here, we use the generalized Ito formula which applies to SDEs with random
switching. For more information, see Lemma 3 on p. 104 of [40] or Lemma 1.9 on p. 49 of [31].
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By the PDE in (16) and the definition of w in (20), the first term on the right-hand
side of (21) vanishes. By the boundary conditions in (17) and (19), the definition of
w, and the definition of τ(0), we then have that (21) becomes

w(x, j) = Ex,j[L(t ∧ τ(0))] + Ex,j [w(X(t ∧ τ(0)), I(t ∧ τ(0)))].(22)

Now,

Ex,j [w(X(t ∧ (τ(0))), I(t ∧ τ(0)))]

= Ex,j [w(X(t), I(t))1τ(0)>t] + Ex,j [w(X(τ(0)), I(τ(0))1τ(0)<t]

= Ex,j [w(X(t), I(t))1τ(0)>t] + 0,

by the boundary condition in (18), the definition of w, and the definition of τ(0).
Therefore, since τ(0) is finite almost surely by Lemma 4 and w is bounded (since it’s
a continuous function on a compact set), we have that

lim
t→∞Ex,j [w(X(t ∧ (τ(0))), I(t ∧ τ(0)))] = 0.

Furthermore, by the same argument as in the proof of Theorem 3, we have that

lim
t→∞Ex,j[L(t ∧ τ(0))] = Ex,j [L(τ)],

where we have written τ in place of τ(0) under the expectation in light of (3).
Therefore, by (22), we have that

vj(x) = ρjwj(x) = ρjEx,j[L(τ)] = Ex[L(τ)1I(0)=j ], j ∈ J .(23)

Summing (23) over j ∈ J and using Theorem 3 completes the proof.

In the case of the simple geometry in section 4.1, we can solve this boundary value
problem explicitly.

Corollary 7. Let U and V1 be as in Theorem 5. Let J be an irreducible Markov
chain on {0, 1} with transition rates α and β,

0
β
�
α

1,

and thus with invariant measure P(J = 0) = ρ0 := α
α+β and P(J = 1) = ρ1 := β

α+β .

Then, for dimension d ∈ {2, 3}, we have that

lim
T→∞

E[u(x, T )] =
ρ1
ρ0

1√
α+ β

fd(ε
√
α+ β, δ

√
α+ β) for all x ∈ U\V1,(24)

where

f2(a, b) =
K0(a)I1(b) + I0(a)K1(b)

K1(a)I1(b)− I1(a)K1(b)
,(25)

and f3(a, b) =

[
1 +

1

a
− 2(1 + b)

1 + b+ e2(b−a)(b − 1)

]−1

,(26)

where I and K are modified Bessel functions of the first and second kinds.
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Remark 8. Under the assumptions of Corollary 7, it is straightforward to use
(24)–(26) to check that the large time expected neurotransmitter concentration sat-
isfies

lim
T→∞

E[u(x, T )] ∼ ρ1
ρ0

gd(ε) as ε → 0,(27)

where gd is given by (2). We will see in section 4.3 that the mean neurotransmitter
concentration in a general domain with many nerve varicosities reduces to (27).

Proof of Corollary 7. Let v(x) := limT→∞ E[u(x, T )]. By Theorem 6, we have
that v(x) = v0(x) + v1(x), where v0 and v1 satisfy

0 = Δv0 − βv0 + αv1,

0 = Δv1 + βv0 − αv1
(28)

with boundary conditions ∂νv0 = ∂νv1 = 0 at the outer boundary, |x| = δ, and v0 = 0,
∂νv1 = ρ1 at the inner boundary, |x| = ε. Solving for v0 and v1 yields (24).

4.3. Almost constant and independent of geometry and other details.
In addition to the general setup of section 3.1, we further assume in this section that
J is an irreducible Markov process and make one mild assumption on the asymptotic
behavior of the diffusion, X , as ε → 0 (see Assumption 4.1 and Remark 12). We
prove that the mean neurotransmitter concentration is approximately constant in
space and that this constant is independent of the geometry and other details. If we
further assume that each component of Jn of J is a Markov process, then we compute
this constant explicitly. Although most of the quantities in this section depend on
ε > 0, we suppress this dependence to simplify notation.

Before giving the proof, we first give an intuitive derivation. We decompose L(τ)
by conditioning on the number of visits to a neighborhood of a varicosity. To describe
these visits, let δ > 0 satisfy

δ > max
n

εrn > 0,(29)

and be sufficiently small so that each of the following sets

Bδ(xn) := {x ∈ R
d : |x− xn| < δ}, n ∈ {1, . . . , N},(30)

is contained in U and Bδ(xn) ∩ Bδ(xm) = ∅ if n 
= m. Let σ−1 = 0 and define the
sequence of stopping times, 0 ≤ w0 < σ0 < w1 < σ1 < · · · , by

wk := inf{t > σk−1 : |X(t)− xn| = εrn for some n ∈ {1, . . . , N}},
σk := inf{t > wk : |X(t)− xn| = δ for some n ∈ {1, . . . , N}}.(31)

Then, define LK to be the local time that the particle accumulates during its Kth
visit to a varicosity

LK = L(σk ∧ τ)− L(wk ∧ τ),(32)

so that L(τ) =
∑∞

K=0 LK .
Conditioning that the particle makes at least K − 1 visits to a neighborhood of a

varicosity and summing over K gives

E[L(τ)] =

∞∑
K=0

P(τ > σK−1)E[LK |τ > σK−1].(33)
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Now, if the varicosities are small (ε � 1), then successive visits to varicosities are well
separated in time. Hence, the states of the jump process during different visits are
approximately independent. Thus,

P(τ > σK−1) ≈
(
P(τ > σ0)

)K
and E[LK |τ > σK−1] ≈ E[L0].(34)

By (33), we then have that

E[L(τ)] ≈ E[L0]

P(τ < σ0)
.(35)

Further, we can compute E[L0] and P(τ < σ0) since they only involve the radially
symmetric domain, {x ∈ U : εrn ≤ |x− xn| ≤ δ} for some n. We compute these two
quantities in Lemma 9 and then make this argument precise in the rest of the section.
The proofs of all the lemmas are collected in the appendix.

Lemma 9. Under the assumptions of Corollary 7, define the stopping times

s := inf{t > 0 : |X(t)| = δ},
τ := inf{t > 0 : (|X(t)| = ε) and (J1(−t) = 0)}.

Define the splitting probability p(x) = Px(τ > s), and the expected local time at |x| = ε
before the minimum of s and τ , h(x) = Ex[L(s ∧ τ)]. Then, evaluating at |x| = ε,

p(x)||x|=ε =
(εηρ0 log ( δ

ε

)
(K0(δη)I1(εη) + I0(δη)K1(εη))

ρ1(I0(δη)K0(εη)−K0(δη)I0(εη))
+ 1

)−1

if d = 2,

p(x)||x|=ε =
δρ1

(
e2δη − e2εη

)
e2εη(εηρ0(δ − ε)− δ + ερ0) + e2δη(ερ0(δη − εη − 1) + δ)

if d = 3,

and

h(x)||x|=ε = gd(ε, δ)p(x)||x|=ε,

where

gd(ε, δ) =

{
ε log(δ/ε) if d = 2,

ε(δ − ε)/δ if d = 3.

Remark 10. Under the assumptions of Lemma 9, it is straightforward to check
that limε→0 p(x)||x|=ε = ρ1 and

h(x)||x|=ε

1− p(x)||x|=ε
∼ ρ1

ρ0
gd(ε) ∼ lim

T→∞
E[u(x, T )] as ε → 0,

where gd is given by (2).

Before stating and proving a precise version of (35), we need a few lemmas. The
first lemma checks that the first passage time of X to a varicosity diverges as the
varicosity radius ε shrinks to zero.

Lemma 11. Recall w0 in (31). If x ∈ U\{x1, . . . , xN}, then for each T > 0

Px(w0 < T ) → 0 as ε → 0.
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We now make the following mild assumption.

Assumption 4.1. If x ∈ U\{x1, . . . , xN} and n ∈ {1, . . . , N}, then

Px(X(w0) ∈ ∂Vn) → πn :=
rn∑N

m=1 rm
as ε → 0.

Remark 12. Assumption 4.1 is very mild. In d = 3, it has been shown to hold
using formal asymptotic PDE analysis [15] (see also [34]). Similar analysis has shown
it holds in d = 2 if rn = r for all n [14]. Furthermore, if each varicosity has the same
radius and each component Jn of J is itself a Markov process with the same invariant
measure, then the assumption is superfluous.

For notational ease, we let I(t) = J(−t) denote the time reversal of J . We also
use Px,i and Ex,i to denote probability or expectation conditioned on X(0) = x and
I(0) in state i ∈ J . Our next lemma below asserts that no matter where (X(0), I(0))
starts, its distribution at the first timeX hits a varicosity is approximately the product
measure π × ρ.

Lemma 13. Let η > 0 and x ∈ U\{x1, . . . , xN}. Then there exists an ε0 =
ε0(η, x) > 0 such that if ε < ε0, then

|Px,j(X(w0) ∈ ∂Vn ∩ I(w0) = i)− πnρi| < η

for all i, j ∈ J and n ∈ {1, . . . , N}.
Our next lemma extends Lemma 13 to the kth time X hits a varicosity.

Lemma 14. Let 0 ≤ w0 < σ0 < w1 < σ1 < · · · be (31). For k ∈ N ∪ {0}, i ∈ J ,
and n ∈ {1, . . . , N}, let Ak

n,i denote the event

Ak
n,i := {X(wk) ∈ ∂Vn ∩ I(wk) = i}.(36)

Let η > 0 and x ∈ U\{x1, . . . , xN}. Then there exists an ε1 = ε1(η, δ, x)
such that if ε < ε1 and B ∈ F(σk−1), where F(σk−1) is the σ-algebra generated
by {(X(t), J(t))}σk−1

t=0 , then

|Px(A
k
n,i|B)− πnρi| < η

for all k ∈ N ∪ {0}, i ∈ J , and n ∈ {1, . . . , N}.
With these lemmas in place, we are ready to prove that if the nerve varicosities

are small, then the mean neurotransmitter is approximately constant in space and
that this constant does not depend on many details in the problem.

Theorem 15. Assume the setup of section 3.1, suppose Assumption 4.1 holds,
and assume J is an irreducible Markov process. Then there exists a constant, κ =
κ
(
d, {Jn}Nn=1, εr

)
, depending only on the spatial dimension, d ∈ {2, 3}, the marginal

statistics of each of the N components, {Jn}Nn=1, of the jump process J , and the radii
of the varicosities, εr = ε(r1, . . . , rN ), so that for each x ∈ U\{x1, . . . , xN}, we have

lim
t→∞E[u(x, t)] ∼ κ as ε → 0.

Remark 16. We note that the constant, κ, is independent of correlations be-
tween different nerve varicosities. That is, κ is unchanged if the varicosities fire
synchronously, independently, or with some nontrivial correlation.
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We will see in the proof that if each Jn is a Markov process with invariant measure,

P(Jn(0) = 0) = ρ
(n)
0 and P(Jn(0) = 1) = ρ

(n)
1 , then using Remark 10 we have

κ(d, ρ, εr) =

∑N
n=1 ρ

(n)
1 rngd(εrn)∑N

n=1 ρ
(n)
0 rn

,

where gd is given by (2).

Remark 17. Our proof of Theorem 15 can be viewed as a probabilistic version of
PDE matched asymptotics. In such PDE analysis, one typically constructs an outer
solution that is valid in the bulk of the domain and an inner solution that is valid
only in a neighborhood of the boundary [15, 16, 27, 36]. Matching these two solutions
then gives a global solution. Analogously, our proof computes outer statistics of a
Brownian particle that are valid when the particle is far from a boundary and inner
statistics that are valid when the particle is near a boundary. Conditioning on the
number of times the particle is in a neighborhood of the boundary then gives global
statistics. We note that we employed similar ideas in our analysis of mean first passage
times in random environments in [7, 8].

Proof of Theorem 15. For each n we claim that Px(τ > σ0) = Py(τ > σ0) and
Ex[L0] = Ey[L0] for all x, y ∈ ∂Vn by symmetry. To see this, recall from (30)–(31)
that σ0 ≥ 0 is the first time that X(t) leaves the ball Bδ(xn), where δ > maxn εrn > 0
is sufficiently small so that Bδ(xn) ⊂ U and Bδ(xn)∩Bδ(xm) = ∅ if n 
= m. Hence, if
x, y ∈ ∂Vn, then the problem is radially symmetric for t ∈ [0, σ0]. The event {τ > σ0}
and the random variable L0 are measurable with respect to F(σ0), and thus the claim
is verified.

Therefore if x ∈ ∂Vn, let Pn(τ > σ0) and En[L0] denote Px(τ > σ0) and Ex[L0],
respectively. Similarly, if x ∈ ∂Vn, let Pn,i(τ > σ0) and En,i[L0] denote Px,i(τ > σ0)
and Ex,i[L0], respectively. Define

p :=

N∑
n=1

Pn(τ > σ0)πn and l :=

N∑
n=1

En[L0]πn

and κ = l/(1− p). Suppressing the x-dependence, define lK = lK(x) for K ≥ 0 by

lK :=
Ex[LK1{τ>σK−1}]
Px(τ > σK−1)

=
Ex[LK ]

Px(τ > σK−1)
,(37)

where LK and σK−1 are as in (32) and (31). In light of Theorem 3, we need to show
that the following quantity tends to zero as ε → 0:∣∣∣ l/(1− p)

Ex[L(τ)]
− 1

∣∣∣ = 1

Ex[L(τ)]

∣∣∣∣∣
∞∑

K=0

Ex[LK ]− l
∑
K=0

pK

∣∣∣∣∣
≤ 1

Ex[L(τ)]

∣∣∣∣∣
∞∑

K=0

Px(τ > σK−1)lK − l
∑
K=0

pK

∣∣∣∣∣
≤ 1

Ex[L(τ)]

∞∑
K=0

(∣∣Px(τ > σK−1)− pK
∣∣lK + pK

∣∣lK − l
∣∣).

(38)

We work on |lK − l| first. Let AK
n,i be as in (36) and define

L̃K := L(σK ∧ τK)− L(wK),
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where τK is the stopping time

τK = inf{t > wK : (X(t) ∈ ∂Vn) and (In(t) = 0) for some n ∈ {1, . . . , N}}.(39)

Then LK = 1{τ>σK−1}LK = 1{τ>σK−1}L̃K almost surely and thus using the tower
property of conditional expectation we have that

Ex[LK ] = Ex[1{τ>σK−1}L̃K ] = Ex[1{τ>σK−1}Ex[L̃K |F(wK)]],

where F(wk) is the σ-algebra generated by {(X(t), I(t))}wk
t=0. By the strong Markov

property we have that

Ex[L̃K |F(wK)] = EX(wK),I(wK)[L0].

Thus,

Ex[LK ] =
∑
n,i

Ex[1{τ>σK−1}1AK
n,i

En,i[L0]] =
∑
n,i

En,i[L0]Px(τ > σK−1 ∩ AK
n,i).(40)

Combining (37) and (40), we have that

lK =
∑
n,i

En,i[L0]Px(A
K
n,i|τ > σK−1).

Let η > 0. By Lemma 14, there exists an ε1 > 0 such that if ε < ε1, then

|Px(A
K
n,i|τ > σK−1)− πnρi| < η for all n, i,K.

Now, Ex[L(τ)] ≥ Ex[L0] and thus for ε < ε1 we have that

|lK − l|
Ex[L(τ)]

≤ η

∑
n,i En,i[L0]∑

n,i En,i[L0]ρiPx(X(w0) ∈ ∂Vn)

≤ η(
mini∈J ρi

)(
minn∈{1,...,N} Px(X(w0) ∈ ∂Vn

)
for all K. By Assumption 4.1, there exists a constant C independent of ε and x such
that (

min
i∈J

ρi

)(
min

n∈{1,...,N}
Px(X(w0) ∈ ∂Vn)

)
> C > 0,

and thus for ε < ε1,

|lK − l|
Ex[L(τ)]

≤ η

C
for all K.(41)

We now work on |Px(τ > σK−1) − pK |. Recall (39) and define the event Bk :=
{τk /∈ [wk, σk)}. Then

Px(τ > σK−1) = Px(∩K−1
k=0 Bk) =

K−1∏
k=0

Px(Bk| ∩k−1
j=0 Bj).
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Observe that by the tower property of conditional expectation and the strong Markov
property, we have that

Px(Bk| ∩k−1
j=0 Bj) =

1

Px(∩k−1
j=0Bj)

Ex[1{∩k−1
j=0Bj}Ex[1Bk

|F(wk)]]

=
1

Px(∩k−1
j=0Bj)

Ex[1{∩k−1
j=0Bj}PX(wk),I(wk)(τ > σ0)].

Hence,

Px(Bk| ∩k−1
j=0 Bj) =

1

Px(∩k−1
j=0Bj)

∑
n,i

Ex[1{∩k−1
j=0Bj}1Ak

n,i
PX(wk),I(wk)(τ > σ0)]

=
∑
n,i

Px(A
k
n,i| ∩k−1

j=0 Bj)Pn,i(τ > σ0).

Therefore, by Lemma 14 there exists an ε2 > 0 such that if ε < ε2, then for all k

|Px(Bk| ∩k−1
j=0 Bj)| − p| ≤

∑
n,i

Pn,i(τ > σ0)
∣∣Px(A

k
n,i| ∩k−1

j=0 Bj)− πnρi
∣∣ ≤ η.

Therefore for all K

|Px(τ > σK−1)− pK | =
∣∣∣∣∣
K−1∏
k=0

Px(Bk| ∩k−1
j=0 Bj)− pK

∣∣∣∣∣
≤

K−1∑
m=0

∣∣Px(Bm| ∩m−1
j=0 Bj)− p

∣∣pK−m−1
m−1∏
k=0

Px(Bk| ∩k−1
j=0 Bj)

≤
K−1∑
m=0

η(p+ η)K−1 = ηK(p+ η)K−1.

(42)

Furthermore, by (41) we have that if ε < ε1, then for all K

lK
Ex[L(τ)]

≤ |lK − l|
Ex[L(τ)]

+
l

Ex[L(τ)]
≤ η

C
+

l

Ex[L(τ)]
.(43)

By Assumption 4.1, there exists an ε3 > 0 such that if ε < ε3, then for all n

|Px(X(w0) ∈ ∂Vn

)− πn| < πn

2
,

since πn > 0 for all n. Thus,

l

Ex[L(τ)]
≤

∑
n,i En,i[L0]πnρi∑

n,i En,i[L0]Px(X(w0) ∈ ∂Vn

)
ρi

≤ 2.(44)

Combining (38) with (41), (42), (43), and (44), we have that if ε < min{ε1, ε2, ε3},
then

1

Ex[L(τ)]

∣∣∣Ex[L(τ)]− l

1− p

∣∣∣ ≤ ∞∑
K=0

(( η

C
+ 2

)
ηK(p+ η)K−1 +

η

C
pK

)
.

Since η > 0 was arbitrary and since C is independent of ε, it remains only to check
that p ∈ (0, 1) is bounded away from 1 as a function of ε. This is immediate since
Pn,i(τ > σ0) = 0 if state i ∈ J corresponds to In(t) = 0.
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5. Discussion. We have formulated and analyzed a mathematical model of the
fundamental neural mechanism known as volume transmission. Our model consists
of a PDE in a bounded two- or three-dimensional domain with randomly switching
boundary conditions at interior holes. Representing the solution to this random PDE
by a certain expected local time in a random environment, we then investigated the
mean solution to the PDE in the limit of small interior holes.

This limit corresponds to nerve varicosities being much smaller than the distance
between varicosities. The distance between varicosities varies, but for serotonin there
are about 2.6×106 varicosities per cubic millimeter [41] or a distance of about l = 7μm
between varicosities. In Figure 1 of [35], varicosities are typically separated by about
l = 20μm. The mean radius of varicosities in [41] is R = .3μm. Hence, ε = R/l is
much less than 1,

.015 = .3/20 ≤ ε ≤ .3/7 ≈ .04.

Furthermore, in Lemma 13 we took ε sufficiently small to ensure that the Markov
process controlling firing equilibrates by the time a diffusing particle hits a varicosity.
The dimensionless constant characterizing this equilibration time is

D

l2
1

α+ β
,

where D is the neurotransmitter diffusion coefficient and α, β are the rates at which a
neuron goes from firing to quiescent and from quiescent to firing. Reasonable values

are D = 100 μm2

sec , α = 200 1
sec , and β = 1 1

sec [24], making the dimensionless equili-
bration time no larger than .01. Since the time to find a varicosity is on the order
of 1/ε in dimension three [15] and − log ε in dimension two [16], this requirement of
Lemma 13 is likely satisfied by real neural systems.

Naturally, our model neglects some important biological details. For example, the
neurotransmitter release rate is almost certainly not constant while a neuron is firing,
nor are the varicosities perfectly absorbing when a neuron is quiescent. Furthermore,
we have ignored the presence of other types of cells in the volume which may absorb
neurotransmitter or hinder its diffusion. These limitations notwithstanding, we have
discovered the surprising result that the neurotransmitter concentration is approxi-
mately constant across the extracellular space and that this constant is independent
of the number and arrangement of nerve varicosities, the geometry and size of the ex-
tracellular space, and any firing correlations between neurons. A forthcoming paper
will explore the biological implications of these results.

We note that our calculations give only the leading order approximation to the
expected neurotransmitter concentration. To calculate the expected neurotransmit-
ter concentration exactly, one must solve the PDE boundary value problem that we
derived in Theorem 6. In future work, we will use matched asymptotic analysis to
approximate higher order terms to the solution of this PDE boundary value problem
and compare it to detailed numerical simulations.

Finally, while we used the local time representation of Theorem 1 to study the
mean neurotransmitter concentration, one can also use this representation to study
other neurotransmitter statistics. Most generally, one can use Theorem 1 to investi-
gate M -point correlations in space and time. As a specific and biologically relevant
example, Theorem 1 yields that the variance of neurotransmitter has the representa-
tion

Var(u(x, T )) = Var
(
Ex[L(τ(T ) ∧ T )|J ]).(45)
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Using an argument similar to the one in Lemma 4 and Theorem 3, one can take
T → ∞ in (45) and obtain

lim
T→∞

Var(u(x, T )) = Var
(
Ex[L(τ)|J ]

)
= E

[(
Ex[L(τ)|J ]− Ex[L(τ)]

)2]
.(46)

Equation (46) says that the large time variance of the solution to the random
PDE is how much the expected local time varies over different realizations of the
jump process, J . This leads us to conjecture that the variance of neurotransmitter is
small in the majority of the extracellular space and spikes near each varicosity. To
see this, observe that if x ∈ E is near a nerve varicosity, then a Brownian particle
starting at x will (with high probability) hit that varicosity almost immediately. Thus,
Ex[L(τ)|J ] will be very different depending if the jump process is 0 or 1 at early times.
On the other hand, Ex[L(τ)|J ] will depend only weakly on the particular realization
of J if x is far from a varicosity, since in such a case the distribution of hitting times
to varicosities will be very flat.

Furthermore, if the varicosities are small, then the distribution of hitting times
to varicosities will necessarily be very flat outside a vanishingly small neighborhood
of each varicosity. Therefore, one expects that

Ex[L(τ)|J ] ≈ Ex[L(τ)] if ε � 1.(47)

In words, (47) says that knowing the realization of J doesn’t help you predict the local
time because you don’t know when the particle will hit a varicosity if the varicosities
are small. Making this precise, we make the following conjecture.

Conjecture 18. The coefficient of variation of u(x, T ) at large time vanishes in
the small varicosity limit. That is, if x ∈ U\{x1, . . . , xN}, then

lim
T→∞

√
Var(u(x, T ))

E[u(x, T )]
→ 0, as ε → 0.

This conjecture will be investigated using numerical simulation in a future paper.

Appendix A. In this appendix, we prove all of our lemmas.

Proof of Lemma 4. Let n∗ be such that P(Jn∗(t) = 0) > 0. Define

s := inf{t > 0 : X(t) ∈ ∂Vn∗}.
It is a standard result on mean first passage times of Brownian motion [37] that

γ := sup
x∈E

Ex[s] < ∞.

Let σ > 0 and q ∈ (0, 1) be as in (4), and define the sequence of stopping times,
{sk}∞k=0, by s0 = 0, and

sk = inf{t > sk−1 + σ : X(t) ∈ ∂Vn∗} for k ≥ 1.

Observe that

sk − sk−1 > σ almost surely for all k ∈ N,(48)

and

sup
x∈E

Ex[sk] ≤ k(γ + σ) for all k ∈ N.(49)
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Define the sequence of events, {Ak}∞k=1, by

Ak =

{
k−1⋂
j=1

{Jn∗(−sj) = 1}
}

∩ {Jn∗(−sk) = 0}.

Then the sample space is the disjoint union,

Ω =

{ ∞⋃
k=1

Ak

}
∪ A∞, where A∞ =

∞⋂
j=1

{Jn∗(−sj) = 1}.

By (4) and (48), we have that P(A∞) ≤ qk for all k ∈ N and thus P(A∞) = 0. By
the tower property of conditional expectation, conditioning over realizations of the
particle X and using (49) yield

Ex[sk1Ak
] = Ex[skEx[1Ak

|X ]] ≤ qk−1
Ex[sk] ≤ qk−1k(γ + σ),

since Ex[1Ak
|X ] ≤ qk−1 almost surely by (4). Therefore,

sup
x∈E

Ex[τ ] ≤
∞∑
k=1

sup
x∈E

Ex[sk1Ak
] ≤ (γ + σ)

∞∑
k=1

kqk−1 < ∞.

Proof of Lemma 9. Using an argument that is very similar to the proof of The-
orem 6, one can show that p(x) = p0(x) + p1(x), where p0 and p1 satisfy (28) with
boundary conditions p0 = α

α+β , p1 = β
α+β at the outer boundary, |x| = δ, and

∂νp1 = p0 = 0 at the inner boundary, |x| = ε. Solving these exactly yields p(x).
Similarly, h(x) = h0(x) + h1(x), where h0 and h1 satisfy (28) with boundary

conditions h0 = 0, h1 = 0 at the outer boundary, |x| = δ, and h0 = 0, ∂νh1 = β
α+β at

the inner boundary, |x| = ε. Solving these exactly yields h(x).

Proof of Lemma 11. For each m ≥ 1, let Am be the event that w0 < T for
ε = 1/m. Since Am+1 ⊂ Am for m ≥ 1, it follows that Px(Am) → Px(∩kAk) as
m → ∞. However, Px(∩kAk) = 0 since Brownian motion in dimension d ≥ 2 almost
surely does not hit a given finite set of points, assuming it does not start at one of
those points.

Proof of Lemma 13. Since J is an irreducible Markov process with unique invari-
ant distribution ρ ∈ R

|J |, it follows that the time reversal of J is also an irreducible
Markov process with unique invariant distribution ρ ∈ R

|J | (see, for example, section
3.7 in [32]) and thus there exists a T = T (η) > 0 so that

|Px,j(I(t) = i)− ρi| < η for all t > T, x ∈ E, and i, j ∈ J .

Further, by Lemma 11, there exists an ε1 = ε1(T ) so that

Px(w0 < T ) < η for all ε < ε1.(50)

By Assumption 4.1, there exists an ε2 = ε2(x) so that

|Px,j(X(w0) ∈ ∂Vn)− πn| < η for all ε < ε2, j ∈ J , and n ∈ {1, . . . , N}.
Let ε < ε0 := min{ε1, ε2}. Then, by (50) and the tower property of conditional
expectation, we have that

Px,j(X(w0) ∈ ∂Vn ∩ I(w0) = i) ≤ Ex,j [1{X(w0)∈∂Vn}1{w0>T}1{I(w0)=i}] + η

= Ex,j [1{X(w0)∈∂Vn}1{w0>T}Ex,j [1{I(w0)=i}|FX
w0

]] + η,
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where FX
w0

denotes the σ-algebra generated by X until it hits a varicosity, FX
w0

=
σ({X(t)}w0

t=0). Therefore, adding and subtracting Ex,j [1{X(w0)∈∂Vn}1{w0>T}ρi] yields

|Px,j(X(w0) ∈ ∂Vn ∩ I(w0) = i)− πnρi|
boig ≤ Ex,j

[
1{X(w0)∈∂Vn}1{w0>T}

∣∣Ex,j [1{I(w0)=i}|FX
w0

]− ρi
∣∣]

+
∣∣Px,j(X(w0) ∈ ∂Vn)− πn

∣∣ρi + 2η.

By the choice of T ,

1{w0>T}
∣∣Ex,j[1{I(w0)=i}|FX

w0
]− ρi

∣∣ < η almost surely,

and by the choice of ε ∣∣Px,j(X(w0) ∈ ∂Vn)− πn

∣∣ < η,

so the proof is complete.

Proof of Lemma 14. By the tower property of conditional expectation and the
strong Markov property, we have that

Px(A
k
n,i|B) =

1

Px(B)
Ex[1Ak

n,i
1B] =

1

Px(B)
Ex[1BEx[1Ak

n,i
|F(σk−1)]]

=
1

Px(B)
Ex[1BPX(σk−1),I(σk−1)(A

0
n,i)].

Now, X(σk−1) ∈ ∪N
n=1∂Bδ(xn) =: S almost surely, where Bδ(y) is as in (30). This

set, S, is compact so if ε0(η, y) is as in Lemma 13, then ε0(η, y) must achieve its
infimum for y ∈ S. Thus ε1 := infy∈S ε0(η, y) > 0. Therefore, if ε < ε1, Lemma 13
ensures that

|PX(σk−1),I(σk−1)(A
0
n,i)− πnρi| < η almost surely,

and the proof is complete.
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