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Boundary Value Problems for Statistics of Diffusion in a Randomly Switching
Environment: PDE and SDE Perspectives∗

Sean D. Lawley†

Abstract. Driven by diverse applications, several recent models impose randomly switching boundary condi-
tions on either a PDE or SDE. The purpose of this paper is to provide tools for calculating statistics
of these models and establish a connection between these two perspectives on diffusion in a random
environment. Under general conditions, we prove that the moments of a solution to a randomly
switching PDE satisfy a hierarchy of BVPs with lower order moments coupling to higher order mo-
ments at the boundaries. Further, we prove that joint exit statistics for a set of particles following a
randomly switching SDE satisfy a corresponding hierarchy of BVPs. In particular, the Mth moment
of a solution to a switching PDE corresponds to exit statistics for M particles following a switching
SDE. We note that though the particles are noninteracting, they are nonetheless correlated because
they all follow the same switching SDE. Finally, we give several examples of how our theorems reveal
the sometimes surprising dynamics of these systems.
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1. Introduction. Several recent models impose randomly switching boundary conditions
on either a partial differential equation (PDE) [8, 22, 23, 25] or stochastic differential equation
(SDE) [1, 4, 6, 7, 35, 36]. These models appear in a diverse set of fields, including neuroscience,
insect physiology, medicine, biochemistry, intermittent search, and the derivation of classical
objects in dynamical systems. The PDE models arise from considering a density of particles
diffusing in a random environment, whereas the SDE models arise from considering only
finitely many particles diffusing in a random environment.

The purpose of this paper is to provide tools for calculating statistics of these models and
establish a connection between these two perspectives on diffusion in a random environment.
We also give several examples to show how our tools elucidate the dynamics of these stochastic
systems. In section 2 we consider evolution PDEs of the form

∂tu = Lu,(1)

and let both the boundary conditions and the differential operator L randomly switch accord-
ing to a continuous-time Markov jump process. Under certain regularity assumptions on the
resulting L2-valued piecewise deterministic Markov process {u(x, t)}t≥0, we prove that the
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moments of the process satisfy a hierarchy of boundary value problems (BVPs) with lower
order moments coupling to higher order moments at the boundaries.

In section 3 we consider a set of particles diffusing in a bounded domain and allow both
(a) the SDE governing their motion to randomly switch and (b) pieces of the boundary to
switch between being either absorbing or reflecting. We note that though the particles are
noninteracting, they are nonetheless correlated because they all follow the same switching
SDE and boundary conditions. We prove that joint exit statistics of the particles (survival
probabilities, mean first passage times, hitting probabilities) satisfy a hierarchy of BVPs that
is very similar to the one for moments of solutions to switching PDEs. In particular, the
Mth moment of a solution to a switching PDE corresponds to exit statistics for M particles
following a switching SDE.

We now comment on how this paper relates to recent work on similar systems. To the
best of our knowledge, [25] and [8] are the only other works that develop tools to analyze
PDEs with randomly switching boundary conditions. The machinery of [25] has the advan-
tage that it does not require the switching to be Markovian, but our present results allow
for much simpler calculation of statistics if the switching is Markovian. The BVPs of The-
orem 1 are derived in [8] for a specific example by discretizing space and constructing the
Chapman–Kolmogorov equation for the resulting finite-dimensional stochastic hybrid system.
We generalize this result by using different techniques. Exit statistics for a single diffusing
particle in a domain with switching boundary conditions are computed in [1, 6, 7, 35, 36].
Hitting probabilities for multiple particles are derived in [8] for a specific example. To the best
of our knowledge, the present work is the first to give tools to compute joint exit statistics
such as hitting probabilities, mean first passage times, and survival probabilities for multiple
particles in general systems. Finally, the connections that we establish between switching
PDEs and switching SDEs further develops the connections between classical potential theory
and Brownian motion, first investigated over 60 years ago by Kakutani [20], Kac [19], and
Doob [13].

In what follows, section 2 focuses on switching PDEs and section 3 considers switching
SDEs. In addition to general theorems, both sections contain examples to (a) illustrate the
biological applications that prompted this work and (b) show how the theorems reveal the
dynamics of the stochastic systems (which are sometimes surprising). We conclude with a
brief discussion and an appendix that collects some technical points.

2. PDE perspective.

2.1. Hierarchy of moment equations. In this section, we prove a theorem that gives the
BVPs satisfied by the moments of the solution to a randomly switching PDE. The resulting
BVP given in Theorem 1 is then used in applications as demonstrated in Examples 4–7
in subsection 2.2. The biological applications are to neuroscience (Example 4) and insect
respiration (Example 5). Example 6 shows that randomly switching between two stable PDE
BVPs can induce a blowup, and Example 7 derives Robin boundary conditions and interface
jump conditions as certain limits of randomly switching conditions.

Let U ⊂ Rd be an open set which will serve as the domain for our switching PDE (the
regularity of U will be handled by assumptions 1–6). For each i in some finite set I, suppose
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we are given a differential operator of the form

Liu(x) =

d∑
j=1

(bi)j(x)∂xju+
1

2

d∑
l,j=1

(σiσ
T
i )l,j(x)∂xl,xju+ si(x)u,(2)

where bi : Ū 7→ Rd, σi : Ū 7→ Rd×d, si : Ū 7→ R, and xj denotes the jth component of x ∈ Rd.
The three terms in (2), respectively, describe advection, diffusion, and any sinks or sources.
In order to describe boundary conditions, suppose that for each i ∈ I, the pairwise disjoint
sets ΓDir

i , ΓNeu
i , and ΓRob

i partition the boundary

ΓDir
i ∪ ΓNeu

i ∪ ΓRob
i = ∂U,

and we are given functions

gDir
i : ΓDir

i → R, gNeu
i : ΓNeu

i → R,
and gRob

i , hRob
i : ΓRob

i → R, fRob
i : ΓRob

i → ∂U.
(3)

Dirichlet, Neumann, and Robin conditions will be imposed, respectively, on ΓDir
i , ΓNeu

i , ΓRob
i

using the corresponding superscripted functions in (3). We note that fRob
i is needed to describe

nonlocal boundary conditions (see Example 6).
To describe the random switching, let {J(t)}t≥0 be a continuous time Markov jump process

on I with generator Q. The generator Q is an I × I matrix with nonnegative off diagonal
entries qij ≥ 0 giving the jump rate from state i ∈ I to j ∈ I. The diagonal entries of Q are
chosen so that Q has zero row sums and thus correspond to (minus) the total rate of leaving
state i ∈ I.

Suppose that there exists a stochastic process {u(x, t)}t≥0 adapted1 to {J(t)}t≥0 taking
values in L2(U) satisfying the following assumptions:

1. For each t > 0, we have that u(·, t) ∈ C2(Ū) almost surely. That is, for each t > 0
the spatial derivative Dαu(x, t) extends continuously to Ū almost surely2 for each
multi-index α satisfying |α| ≤ 2.

2. For each x ∈ U , we have that u(x, ·) ∈ C((0,∞)) almost surely.
3. If t > 0 and x ∈ U , then we have that

∂tu(x, t) = LJ(t)u(x, t) almost surely.

4. If t > 0 and ∂n denotes the normal derivative, then almost surely we have

u(x, t) = gDir
J(t)(x) if x ∈ ΓDir

J(t),

∂nu(x, t) = gNeu
J(t)(x) if x ∈ ΓNeu

J(t),

u(fRob
J(t) (x), t) + hRob

J(t)(x)∂nu(x, t) = gRob
J(t)(x) if x ∈ ΓRob

J(t).

1Informally, a stochastic process {X(t)}t≥0 is adapted to a stochastic process {Y (t)}t≥0 if the value of X(s)
depends only on {Y (t)}t≤s.

2If a property holds almost surely, then it holds except perhaps on an event of probability zero. Probability
zero events do not affect statistics.
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5. There exists a deterministic function C : U × (0,∞)→ R that is bounded on compact
subsets such that if x ∈ U , t > 0, and i ∈ I, then almost surely

d∑
j=1

(
|(bi)j(x)|+ 1

)
|∂xju(x, t)|+

d∑
l,j=1

(
|(σiσTi )l,j(x)|+ 1

)
|∂xl,xju(x, t)|

+
(
|si(x)|+ 1

)
|u(x, t)| ≤ C(x, t).

6. For each t > 0 and i ∈ I, there exist a random variable C2(t) > 0 with finite expec-
tation and a neighborhood B of ΓNeu

i ∪ ΓRob
i such that if j ∈ {1, . . . , d} and x ∈ B,

then

|∂xju(x, t)1J(t)=i| ≤ C2(t) almost surely.

Assumption 1 allows us to define the pointwise process {u(x, t)}t≥0 taking values in R
for each x ∈ Ū , and assumption 2 asserts that this process is continuous in time for each
x in the interior. Assumption 3 asserts that the process does in fact satisfy a switching
PDE, and assumption 4 gives the switching boundary conditions. The bound in assumption 5
allows us to exchange differentiation with expectation in the interior of the domain, and the
bound in assumption 6 allows us to exchange differentiation with expectation at the boundary.
Dynamically, these assumptions ensure that the spatial variation in the random solution is
bounded in the interior of the domain and has finite mean near the boundary.

These assumptions are satisfied if we choose a sufficiently regular domain and sufficiently
regular differential operators and boundary conditions. For our motivating biological models
(Examples 4 and 5), we consider the diffusion equation on an interval so that verifying as-
sumptions 1–5 follows from elementary properties of solutions to the diffusion equation such as
smoothness and the maximum principle. For these examples, assumption 6 can be verified by
analyzing the spectral decompositions of the associated solution operators (see the appendix).

For M a positive integer, let x1, . . . ,xM ∈ Ū , i ∈ I, and t > 0. Define the function
vMi : ŪM × [0,∞)→ R by

vMi (x1, . . . ,xM , t) := E

[
1J(t)=i

M∏
m=1

u(xm, t)

]
,(4)

where E denotes pointwise expectation and 1A denotes the indicator function on an event A.
Define v0i := P(J(t) = i).

The decomposition in (4) is key to determining statistics of u(x, t). Observe that summing
the vMi ’s over i ∈ I gives∑

i∈I
vMi (x1, . . .xM , t) = E[u(x1, t) · · · · · u(xM , t)].

Thus, if we let x1 = · · · = xM = x, then we obtain the Mth moment of u(x, t). The reason
that we decompose the Mth moment into a sum of vMi ’s is that the PDE for each vMi involves
Li, and the vMi boundary conditions involve the ith boundary conditions in (3). In contrast,
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it is difficult to directly write down the PDE and boundary conditions satisfied by the Mth
moment of u(x, t). For example, if u(x, t) switches between a Dirichlet condition and a Robin
condition, it’s not clear what boundary condition the mean of u(x, t) satisfies.

The following theorem gives the BVP satisfied by {vMi }i∈I .
Theorem 1 (moments of randomly switching PDE). If t > 0 and (x1, . . . ,xM ) ∈ UM , then

∂tv
M
i =

(
M∑
m=1

Lmi

)
vMi +

∑
j∈I

qjiv
M
j ,(5)

where Lmi is the differential operator in (2) acting on the mth spatial variable xm, and qij is
the (i, j)th entry of the generator Q of J(t).

If t > 0, xm ∈ ∂U , (x1, . . . ,xm−1,xm+1, . . . ,xM ) ∈ UM−1, and ∂nm denotes the normal
derivative with respect to the mth spatial variable xm, then

vMi (x1, . . . ,xM , t)

vM−1i (x1, . . . ,xm−1,xm+1, . . . ,xM , t)
= gDir

i (xm), xm ∈ ΓDir
i ,(6)

∂nmv
M
i (x1, . . . ,xM , t)

vM−1i (x1, . . . ,xm−1,xm+1, . . . ,xM , t)
= gNeu

i (xm), xm ∈ ΓNeu
i ,(7)

and

vMi (x1, . . . ,xm−1, f
Rob
i (xm),xm+1, . . . ,xM , t) + hRobi (xm)∂nmv

M
i (x1, . . . ,xM , t)

vM−1i (x1, . . . ,xm−1,xm+1, . . . ,xM , t)

= gRobi (xm), xm ∈ ΓRob
i .

(8)

Remark 2. In matrix notation, the PDE in (5) is

∂tv = (L+QT )v,

where v is the vector with ith component vMi , L is the diagonal matrix with ith diagonal
entry

∑M
m=1 Lmi , and QT is the transpose of the generator of J(t).

Remark 3. If the randomly switching PDE only imposes Dirichlet conditions (that is,
ΓDir
i = ∂U for all i ∈ I), then assumption 6 is superfluous.

Proof. We first prove (5) for the case M = 1. Fix x ∈ U , t > 0, and i ∈ I. For each
h ∈ R, define the events

At,h0 = {no jump times of J in [t, t+ h]},

At,h1 = {one jump time of J in [t, t+ h]},

At,h2 = {two or more jump times of J in [t, t+ h]},

where s is said to be a jump time of J if limt→s+ J(t) 6= limt→s− J(t). For ease of notation,
for the remainder of the proof we use {A} to denote the indicator function for an event A.



BVPS FOR STATS OF DIFFUSION IN RANDOM ENVIRONMENTS 1415

Suppressing the x dependence, we have that

∂tv
1
i (t) = lim

h→0

1

h
E
[(
u(t+ h){J(t+ h) = i} − u(t){J(t) = i}

)
{At,h0 }

]
+ lim
h→0

1

h
E
[(
u(t+ h){J(t+ h) = i} − u(t){J(t) = i}

)
{At,h1 }

]
=: T0 + T1,(9)

by the bound in assumption 5 and the fact that P(At,h2 ) = o(h). The fact that P(At,h2 ) = o(h) is
fairly standard [31] and follows from the fact that the time between jumps of a continuous-time
Markov chain is exponentially distributed. We work on the two terms in (9) separately.

First, note that

T0 = lim
h→0

E
[1

h

(
u(t+ h)− u(t)

)
{At,h0 }{J(t) = i}

]
.

Now, by assumption 3, we have the following almost sure equality:

lim
h→0

1

h

(
u(t+ h)− u(t)

)
{At,h0 }{J(t) = i} = ∂tu(t){J(t) = i}.

Further, by the mean value theorem there exists a random ξ(h) so that∣∣1
h

(
u(t+ h)− u(t)

)
{At,h0 }{J(t) = i}

∣∣ = |∂tu(ξ(h)){At,h0 }{J(t) = i}|

= |Liu(ξ(h)){At,h0 }{J(t) = i}|
≤ sup

s∈(t−h,t+h)
C(x, s) almost surely,

by assumption 3 and the bound in assumption 5. Thus, by the bounded convergence theorem,
we have that

T0 = E[∂tu(t){J(t) = i}] = E[Liu(t){J(t) = i}],

where the second equality follows by virtue of assumption 3. It is then straightforward to use
assumption 5 and the bounded convergence theorem to exchange the differential operator Li
with the expectation to conclude

T0 = Liv1i (t).(10)

Moving to the second term in (9), observe that

E
[
u(t+ h){J(t+ h) = i}{At,h1 }

]
− E

[
u(t){J(t) = i}{At,h1 }

]
=
∑
j 6=i

E
[
u(t+ h){J(t+ h) = i}{J(t) = j}{At,h1 }

]
−
∑
j 6=i

E
[
u(t){J(t+ h) = j}{J(t) = i}{At,h1 }

]
.

(11)
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Suppose h > 0. Focusing on the second sum in (11), let j 6= i and observe that

E[u(t){J(t+ h) = j}{J(t) = i}{At,h1 }]
= E[u(t){J(t+ h) = j}{J(t) = i}] + o(h)

= P(J(t+ h) = j|J(t) = i)E[u(t){J(t) = i}] + o(h) = hqijv
1
i (t) + o(h),

(12)

by P(At,h2 ) = o(h), assumption 5, and P(J(t+ h) = j|J(t) = i) = hqij + o(h) [31].
We would like to apply the same argument to the terms in the first sum in (11), but those

terms contain a u(t+ h) instead of a u(t) in the expectation. Fortunately, we can show that
these are close to each other. If j 6= i and the random σ ∈ (0, h) is such that t+σ is the jump
time between t and t+ h, then

E[(u(t+ h)− u(t)){J(t+ h) = i}{J(t) = j}{At,h1 }]

= E[(u(t+ h)− u(t+ σ)){J(t+ h) = i}{J(t) = j}{At,h1 }]

+ E[(u(t+ σ)− u(t)){J(t+ h) = i}{J(t) = j}{At,h1 }]
≤ h sup

s∈(t−h,t+h)
C(x, s)P{J(t+ h) = i} ∩ {J(t) = j}+ o(h),

(13)

by assumption 3, the mean value theorem, the bound in assumption 5, and P(At,h2 ) = o(h).
Thus, combining (12) and (13), we have that if j 6= i, then

E
[
u(t+ h){J(t+ h) = i}{J(t) = j}{At,h1 }

]
= hqjiv

1
j (t) + o(h).(14)

An analogous argument shows that (12) and (14) also hold for h < 0. Putting this
together, we have that

T1 =
∑
j 6=i

qjiv
1
j (t)−

∑
j 6=i

qijv
1
i (t) =

∑
j∈I

qjiv
1
j (t).(15)

Finally, combining (9), (10), and (15) verifies (5) for M = 1.
The proof of (5) for M > 1 is similar, and so we only sketch it. As before, we have that

∂tv
M
i (t) = lim

h→0

1

h
E

[(
{J(t+ h) = i}

M∏
m=1

u(xm, t+ h)− {J(t) = i}
M∏
m=1

u(xm, t)

)
{At,h0 }

]

+ lim
h→0

1

h
E

[(
{J(t+ h) = i}

M∏
m=1

u(xm, t+ h)− {J(t) = i}
M∏
m=1

u(xm, t)

)
{At,h1 }

]
=: T M0 + T M1 .

The proof that

T M0 =
M∑
m=1

Lmi vMi (x1, . . . ,xM , t)
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proceeds as the proof of (10) with the added complication that we must use the product rule
for differentiation. The proof that

T M1 =
∑
j∈I

qjiv
M
j (x1, . . . ,xM , t)

is the same as the proof of (15).
We now verify the boundary conditions. The Dirichlet condition in (6) is immediate.

To verify the Neumann and Robin conditions in (7) and (8), it is enough to show that if
xk ∈ ΓNeu

i ∪ ΓRob
i , then

∂nk
E

[
{J(t) = i}

M∏
m=1

u(xm, t)

]
= E

[
{J(t) = i}∂nk

u(xk, t)

M∏
m=1,m6=k

u(xm, t)

]
.

This follows immediately from assumption 6 and the dominated convergence theorem.

2.2. PDE examples. In this section, we apply Theorem 1 to a series of examples. The
purpose of this section is to give some of the biological applications that prompted this pa-
per and to illustrate how Theorem 1 can elucidate the dynamics of these stochastic PDEs.
Checking that these examples satisfy the appropriate hypotheses is discussed in the appendix.

Figure 1. Dynamics of Example 4. On the left, we plot a single stochastic realization of Example 4.
From this realization, one can see that the stochastic solution fluctuates wildly in the region near the switching
boundary at x = 1 compared to the static boundary at x = 0. This discrepancy is captured by the plot on the right,
which shows that the large time mean solution is constant in space, but the large time standard deviation spikes
at the switching boundary. The mean solution was found by explicitly solving (16), and the variance was found
by numerically solving (17). As a check, we also performed Monte Carlo simulations of the stochastic system
and computed the empirical mean and variance. The empirical Monte Carlo curves were indistinguishable from
the curves obtained from solving (16) and (17). In both plots above, we take L = D = β = 1 and c = α = 10.

Example 4 (neurotransmitter concentration). Sets of neurons can project to a distant
region of the brain and trigger the release of neurotransmitter in that region by firing action
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potentials. This mechanism, known as volume transmission, enables groups of neurons to
affect distant regions of the brain and is an important factor in motor control, Parkinson’s
disease, and the sleep/wake cycle [15, 34].

As a prototype model for volume transmission, consider neurotransmitter diffusing in the
interval [0, L] with a single nerve terminal at x = L that switches between a quiescent state
and a firing state. Let u(x, t) be the concentration of neurotransmitter in the interval [0, L]
and suppose u satisfies the diffusion equation

∂tu = D∆u, x ∈ (0, L), t > 0,

with ∂xu(0, t) = 0 and a condition at x = L that randomly switches between

u(L, t) = 0 (quiescent neuron)
β


α

∂xu(L, t) = c > 0 (firing neuron),

with switching rates α and β. At x = L, the absorbing Dirichlet condition corresponds to
the quiescent state (absorbing neurotransmitter), and the inhomogeneous Neumann condition
corresponds to the firing state of the neuron (releasing neurotransmitter). Reference [22]
appeals to Theorem 1 to analyze this model and more complicated models (with multiple
neurons that fire independently) in order to understand certain aspects of volume transmission.

For this model, applying Theorem 1 with M = 1 shows that the steady state expected
neurotransmitter, limt→∞ E[u(x, t)], is the sum v0(x) + v1(x), where(

0
0

)
= D∆

(
v0
v1

)
+

(
−β α
β −α

)(
v0
v1

)
, x ∈ (0, L),

∂xv0(0) = ∂xv1(0) = v0(L) = 0, ∂xv1(L) = cβ/(α+ β).

(16)

Solving this BVP explicitly, we find that the mean neurotransmitter concentration is constant
in space. Furthermore, while the mean is constant, applying Theorem 1 with M = 2 re-

veals that the steady state 2-point correlation, limt→∞ E[u(x, t)u(y, t)], is the sum v
(2)
0 (x, y) +

v
(2)
1 (x, y), where(

0
0

)
= D∆

(
v
(2)
0

v
(2)
1

)
+

(
−β α
β −α

)(
v
(2)
0

v
(2)
1

)
, (x, y) ∈ (0, L)× (0, L),

∂xv
(2)
0 (0, y) = ∂yv

(2)
0 (x, 0) = ∂xv

(2)
1 (0, y) = ∂yv

(2)
1 (x, 0) = 0,

v
(2)
0 (L, y) = v

(2)
0 (y, L) = 0, ∂xv

(2)
1 (L, y) = cv1(y), ∂yv

(2)
1 (x, L) = cv1(x).

(17)

It is straightforward to solve this BVP numerically and obtain that the standard deviation
of neurotransmitter spikes at x = L, despite the fact that the mean is constant in space (see
Figure 1). Thus, the actual stochastic dynamics depend heavily on space, even though the
mean dynamics do not. This discrepancy highlights the utility of using Theorem 1 to calculate
higher order moments. Using Theorem 1 to analyze two- and three-dimensional models will
be the subject of future work.
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Figure 2. Dynamics of Example 5. On the left, we plot a single stochastic realization of Example 5, and
from this realization one can see that the slope of the solution at x = 0 (and hence the flux) stays relatively close
to 1, despite the fact that the boundary condition at x = 1 is often no flux Neumann. The plot on the right
captures this phenomena by plotting the large time expected flux at x = 0 as a function of the switching rate for
three different values of the proportion of time in the inhomogeneous Dirichlet state. We take L = D = c = 1
so that if the boundary condition at x = 1 was always inhomogeneous Dirichlet, then the flux at x = 0 would
be 1. Thus, these curves show that the flux at x = 0 can remain high even when the proportion of time in the
inhomogeneous Dirichlet state is small, provided the switching is fast. Biologically, this means that an insect
can have its spiracles open a small proportion of time and yet receive essentially just as much oxygen as if
its spiracles were always open, provided they open and close with high frequency. The curves in the right plot
were found by explicitly solving the PDE in (16) with boundary conditions in (18). The dots in the right plot
are empirical fluxes calculated from Monte Carlo simulations of the stochastic system. In both plots, we take
L = D = c = 1. In the left plot, we take α = 25 and β = 75.

Example 5 (insect respiration). Essentially all insects breathe through a network of tubes
that allows oxygen and carbon dioxide to diffuse to and from their cells [40]. Air enters
and exits this network through valves (called spiracles) in the exoskeleton, which sometimes
regulate air flow by rapidly opening and closing. The purpose of this rapid opening and closing
has perplexed physiologists for decades [12, 26].

In order to explain this behavior, the following simple model was first proposed in [25].
Let u(x, t) be the oxygen concentration in a respiratory tube represented by the interval [0, L],
and so u satisfies the diffusion equation

∂tu = D∆u, x ∈ (0, L), t > 0.

We let x = 0 represent where the tube meets the insect tissue, and so we impose an absorbing
Dirichlet condition there, u(0, t) = 0. The x = L end represents the spiracle, and we suppose
that the boundary condition there switches between

u(L, t) = c ≥ 0 (open spiracle)
β


α

∂xu(L, t) = 0 (closed spiracle),
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with switching rates α and β. When the spiracle is open we set u(L, t) equal to the ambient
oxygen concentration, and we impose a no flux condition when the spiracle is closed.

Applying Theorem 1 to this model reveals that the steady state expected oxygen concen-
tration, limt→∞ E[u(x, t)], is the sum v0(x) + v1(x), where v0 and v1 satisfy the PDE in (16)
with boundary conditions

v0(0) = v1(0) = ∂xv0(L) = 0, v0(L) = cα/(α+ β).(18)

Solving this BVP explicitly yields the surprising result that an insect can maintain a large
oxygen flux to its tissue while keeping its spiracles closed the vast majority of the time (see
Figure 2). A forthcoming physiology paper will employ Theorem 1 to further analyze this and
more detailed models involving branching respiratory tubes [10].

Example 6 (switching thermostat). Having given a pair of biological models that prompted
this paper (a third biological model appears in Example 14 in subsection 3.2), we now give
an example to show that the dynamics of a switching PDE can differ tremendously from
the dynamics of the corresponding nonswitching PDEs. Specifically, we give two sets of
boundary conditions for the heat equation such that the solution converges to zero for each
set of boundary conditions, but if the boundary conditions randomly switch, then Theorem 1
reveals the surprising result that the solution goes to infinity.

Consider the following rudimentary model of a thermostat [16, 21]. Suppose the temper-
ature, u(x, t), in the interval [0, π] satisfies

∂tu = ∆u, x ∈ (0, π), t > 0.(19)

To model an air conditioner located at x = 0 and a thermostat located at x = π, we impose
the boundary conditions

∂xu(0, t) = ku(π, t) and ∂xu(π, t) = 0(20)

for some k > 0. Notice that the flux at the air conditioner depends on the temperature at the
thermostat. If the locations of the air conditioner and the thermostat were flipped, then we
would impose

∂xu(0, t) = 0 and ∂xu(π, t) = −ku(0, t).(21)

It can be shown that there exists a critical kc > 0 such that if k ∈ (0, kc), then the solution
to (19) with either boundary conditions (20) or (21) will vanish at large time for any initial
condition [16, 21].

Now, suppose the boundary conditions randomly switch between (20) and (21) according
to a continuous-time Markov jump process with jump rate α > 0. Then, if we suppose
assumptions 5–6 are satisfied (see the appendix for a discussion), then Theorem 1 gives that
the expected temperature, E[u(x, t)], is the sum v0(x, t) + v1(x, t), where

∂t

(
v0
v1

)
= ∆

(
v0
v1

)
+ α

(
−1 1
1 −1

)(
v0
v1

)
, x ∈ (0, π), t > 0,

∂xv0(0, t) = kv0(π, t), ∂xv0(π, t) = 0,

∂xv1(0, t) = 0, ∂xv1(π, t) = −kv1(0, t).

(22)
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Figure 3. Dynamics of Example 6. We plot single stochastic realizations of Example 6 for increasing values
of the switching rate α in the top left (α = 1), top right (α = 10), and bottom left (α = 100). In the bottom right,
we plot the mean of the solution at time t = 10 with α = 100. The initial condition is u(x, 0) = x − π/2, and
thus the mean is rapidly diverging. This last plot was obtained by numerically solving the BVP in Theorem 1.
As a check, we also performed Monte Carlo simulations of the stochastic system and computed the empirical
mean. This empirical mean Monte Carlo curve was indistinguishable from the curve obtained from Theorem 1
and thus is not plotted. In all plots, we take k = 3, which is below the critical threshold kc ≈ 5.6. That is, for
our choice of k = 3 < kc, both individual systems vanish but the switched system blows up.

By analyzing this BVP, one can show that there exist α > 0 and k ∈ (0, kc) such that
E[u(x, t)] → ∞ in the L1[0, π] norm. Thus, stochastically switching between two stable
PDE BVPs induces a blowup. Figure 3 plots E[u(x, t)] in this parameter regime where both
individual systems vanish but the switched system blows up. A detailed bifurcation analysis
of (22) and the underlying stochastic system will be included in a forthcoming publication.
Such a blowup is reminiscent of stochastically switched linear ODEs that blow-up despite
switching between only stable systems [3, 24].
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Example 7 (deriving Robin boundary and interface jump conditions). It was recently shown
that the classical Robin boundary condition and interface jump condition can be derived as
averages of certain switching conditions [23]. By analyzing the BVP given by Theorem 1 for
the mean of the switching PDE in Example 5, it was shown that the mean of the solution
with the switching condition converges to a solution with a Robin condition in a certain
fast switching limit. That is, switching between Dirichlet and Neumann conditions produces
a Robin condition if the switching rate goes to infinity and the proportion of time in the
Dirichlet state goes to 0 at a corresponding rate. If, however, the proportion of time in the
Dirichlet state is bounded away from zero, then one obtains pure Dirichlet as the switching
rate goes to infinity.

To derive an interface jump condition, suppose that u(x, t) satisfies the diffusion equation
on [0, L] with deterministic boundary conditions (say, u(0, t) = 0 and u(L, t) = c > 0), but
with a randomly imposed no flux condition at x = L/2:

J(t)∂xu(L/2, t) = 0,

where J(t) ∈ {0, 1} is a continuous-time Markov jump process

0
β


α

1,

with switching rates α and β. If J(t) starts in its invariant distribution, then a slight gener-
alization of Theorem 1 (see the appendix for details) shows that the mean, E[u(x, t)], is the
sum v0(x, t) + v1(x, t), where

∂t

(
v0
v1

)
= D∆

(
v0
v1

)
+QT

(
v0
v1

)
, x ∈ (0, L/2) ∪ (L/2, L), t > 0,(23)

v0(0, t) = v1(0, t) = 0, v0(L, t) =
α

α+ β
c, and v1(L, t) =

β

α+ β
c,(24)

v0+ = v0−, ∂xv0+ = ∂xv0−, and ∂xv1+ = ∂xv1− = 0,(25)

where f± := limx→L/2± f(x). Starting with this BVP, it was proven that in a certain fast
switching limit, the mean, E[u(x, t)], converges to the solution of the heat equation on [0, L]
with an interface jump condition at x = L/2 [23].

3. Particle perspective.

3.1. Hierarchy of joint exit statistics. In this section, we study sets of particles that
diffuse in a bounded domain. We suppose that some aspects of the environment randomly
change according to a Markov jump process. This changing environment causes (a) the SDE
governing the motion of each particle to change and (b) pieces of the boundary of the domain
to switch between being absorbing or reflecting. Though the Brownian motions driving the
diffusion of each particle are independent, the particle trajectories are correlated since the
particles diffuse in the same randomly changing environment.

In Theorems 8, 12, and 13, we derive BVPs for various exit statistics of the particles. We
then apply the BVP obtained in Theorem 8 to a model of diffusing ligands in Example 14 in
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subsection 3.2. These BVPs are closely related to the BVPs given in Theorem 1 for moments
of solutions to randomly switching PDEs (see the discussion for more information on this
relationship).

First, we define the jump process controlling the switching environment. As in section 2,
above, let {J(t)}t≥0 be a continuous time Markov jump process on a finite set I with generator
Q. Recall that the generator Q is an I×I matrix with nonnegative off diagonal entries qij ≥ 0
giving the jump rate from state i ∈ I to j ∈ I. The diagonal entries of Q are chosen so that
Q has zero row sums and thus correspond to (minus) the total rate of leaving state i ∈ I.

Let U ⊂ Rd be a bounded open set with C2 boundary. In order to describe the switching
boundary, for each i ∈ I let the disjoint sets Γabs

i and Γref
i partition the boundary

Γabs
i ∪ Γref

i = ∂U.

If J(t) = i, then Γabs
i is absorbing and Γref

i is reflecting. In contrast to section 2 above where we
considered Dirichlet, Neumann, and Robin boundary conditions for a PDE, here we consider
only absorbing and reflecting boundary conditions for an SDE. The reason for this disparity is
that while absorbing and reflecting conditions are SDE analogues of Dirichlet and Neumann
conditions, the SDE analogue of a Robin condition is significantly more complicated (see [18,
section 2.3]).

Suppose there are M particles that begin at positions x1, . . . ,xM ∈ Ū . For each m ∈
{1, . . . ,M}, let Xm(t) denote the position of the mth particle at time t ≥ 0, and let τm be
the first time that the mth particle hits an absorbing piece of the boundary. That is, τm is
the stopping time3

τm := inf
{
t ≥ 0 : Xm(t) ∈ Γabs

J(t)

}
,

which we assume to be finite almost surely. For t > τm, we set Xm(t) = Xm(τm) and say that
the particle has exited the domain. For t ≤ τm, we assume that {Xm(t)}t≥0 is the unique
solution to

dXm(t) = bJ(t)(Xm(t)) dt+ σJ(t)(Xm(t)) dWm(t) + n(Xm(t)) dKm(t),(26)

with Xm(0) = xm, where {bi}i∈I and {σi}i∈I are given Lipschitz functions

bi : Ū 7→ Rd and σi : Ū 7→ Rd×d,

Wm(t) is an Rd-valued standard Brownian motion, n : ∂U 7→ Rd is the inner normal field, and
Km(t) is the local time of Xm(t) in ∂U . The local time is the time that Xm(t) spends on ∂U .
Precisely, Km(t) is nondecreasing and increases only when Xm(t) is in ∂U and Km(0) = 0.
The significance of the local time term in (26) is that it forces Xm to reflect from ∂U in the
normal direction and thus ensures that Xm(t) ∈ Ū for all t ≥ 0.

3A stopping time is a random variable whose value is interpreted as the time when a given stochastic process
is terminated according to some rule that depends on current and past states. A classical example of a stopping
time is a first passage time.
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We assume that {W1(t)}t≥0, . . . , {WM (t)}t≥0, and {J(t)}t≥0 are independent. Though
these driving Brownian motions, {W1(t)}t≥0, . . . , {WM (t)}t≥0, are independent, the trajec-
tories, {X1(t)}t≥0, . . . , {XM (t)}t≥0, are nonetheless correlated since they all experience the
same changing environment (that is, the same J(t)).

We note that for each m ∈ {1, . . . ,M}, the pair (Xm(t), J(t)) is a strong Markov process4

and is commonly known as a hybrid switching diffusion (see the books [41] and [29] for more
information about hybrid switching diffusions).

The following theorem gives the survival probability of at least one of the M particles.

Theorem 8 (survival probability). Let M be a positive integer. For each M∈ {1, . . . ,M},
assume that the functions {pMi (x1, . . . ,xM, t)}i∈I

pMi : ŪM × [0,∞)→ [0, 1]

are continuously differentiable in t and twice continuously differentiable in their other argu-
ment and satisfy the PDE

∂tp
M
i = LMpMi for (x1, . . . ,xM, t) ∈ UM × (0,∞),(27)

where LM is the operator

LMpMi =

M∑
m=1

Lmi pMi +
∑
j∈I

qijp
M
j ,(28)

where qij is the (i, j)th entry of the generator Q of J(t), and Lmi is the following differential
operator acting on the mth spatial variable xm:

Lmi pMi =
d∑
j=1

(bi)j(xm)∂(xm)jp
M
i +

1

2

d∑
l,j=1

(σiσ
T
i )l,j(xm)∂(xm)l,(xm)jp

M
i .

Assume that the following boundary conditions are satisfied for each M∈ {1, . . . ,M}:

∂nmp
M
i (x1, . . . ,xM, t) = 0, xm ∈ Γref

i ,(29)

pMi (x1, . . . ,xM, t) = pM−1i (x1, . . . ,xm−1,xm+1, . . . ,xM, t), xm ∈ Γabs
i ,(30)

where ∂nm denotes the normal derivative with respect to the mth spatial variable xm and p0i ≡ 0
for each i.

Assume that the following initial conditions are satisfied for each M∈ {1, . . . ,M}:

pMi (x1, . . . ,xM, 0) = 1 for (x1, . . . ,xM) ∈ UM.(31)

4A stochastic process is a Markov process if the conditional probability distribution of future states of the
process (conditioned on both past and present states) depends only upon the present state, not on the sequence
of states that preceded it. A strong Markov process is similar to a Markov process, except that the “present”
is defined in terms of a stopping time.
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Then pMj (x1, . . . ,xM , t) gives the probability that at least one of the M particles is still in
the interior of the domain at time t given that they start at positions x1, . . . ,xM and J(0) = j.
That is, pMj (x1, . . . ,xM , t) is equal to

P
(
∪Mm=1 {Xm(t) ∈ U}

∣∣X1(0) = x1, . . . ,XM (0) = xM , J(0) = j
)
.

Remark 9. In matrix notation, the PDE in (27) is

∂tp = (L+Q)p,

where p is the vector with ith component pMi , L is the diagonal matrix with ith diagonal
entry

∑M
m=1 Lmi , and Q is the generator of J(t). Similar statements hold for the PDEs in

Theorems 12 and 13.

Remark 10. If we make (30) an absorbing condition, then the solution pMj gives the prob-
ability that all M particles are still in the interior of the domain at time t.

Remark 11. If instead of a switching environment we impose that each particle switches
independently, then calculating joint statistics requires only solving a single BVP on U , instead
of the hierarchy of M BVPs on U , U2, . . . , UM given in the previous theorem.

Proof. We prove the theorem by induction on the number of particles, so we first consider
the base case of M = 1. Let S > 0, define η1(x, t, j) := p1j (x, S − t), and let E0 denote

expectation conditioned on X1(0) = x1 and J(0) = j. The generalized Ito formula5 gives

E0

[
η1(X1(S ∧ τ1), S ∧ τ1, J(S ∧ τ1))

]
− η1(x1, 0, j)

= E0

[ ∫ S∧τ1

0
(∂t + L1)η1(X1(s), s, J(s)) ds

]
− E0

[ ∫ S∧τ1

0
∂nη

1(X1(s), s, J(s)) dK1(s)
]
,

(32)

where S ∧ τ1 is the minimum of S and τ1 and thus S ∧ τ1 ≤ S is a bounded stopping time and
η1(x, S ∧ τ1, j) = p1j (x, S − S ∧ τ1) is well defined. The PDE in (27), the no flux boundary

conditions in (29), and the definitions of τ1 and η1 ensure that the right-hand side of (32) is
zero. Hence,

η1(x1, 0, j) = E0

[
η1(X1(S ∧ τ1), S ∧ τ1, J(S ∧ τ1))

]
.(33)

Recalling the definition of η1, (33) becomes

p1j (x1, S) = E0

[
p1J(S)(X1(S), 0)1S<τ1

]
+ E0

[
p1J(τ1)(X1(τ1), S − τ1)1τ1≤S

]
,(34)

where 1A denotes the indicator function on an event A. By definition of τ1, we have that
X1(τ1) ∈ ∂U , and thus by the boundary condition in (30) we have that the second term in the
right-hand side of (34) is zero. Therefore, by the initial condition in (31) and the definition
of τ1, we have that (34) becomes

p1j (x1, S) = P(X1(S) ∈ U |X1(0) = x1, J(0) = j),

5Ito’s formula is a fundamental result in stochastic analysis and is the stochastic counterpart to the chain
rule [32]. Here, we use the generalized Ito formula which applies to SDEs with random switching. For more
information, see Lemma 3 on p. 104 of [38] or Lemma 1.9 on p. 49 of [29].
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which completes the proof for M = 1.
Now suppose M ≥ 2, and let τ be the time that the first particle exits the domain

τ := inf
1≤m≤M

τm.

Let S > 0, define ηM (y1, . . . ,yM , t, j) := pMj (y1, . . . ,yM , S−t), and let E0 denote expectation
conditioned on X1(0) = x1, . . . , XM (0) = xM , and J(0) = j. Again by the generalized Ito
formula we have that

E0

[
ηM (X1(S ∧ τ), . . . ,XM (S ∧ τ), S ∧ τ, J(S ∧ τ))

]
− ηM (x1, . . . ,xM , 0, j)

= E0

[ ∫ S∧τ

0
(∂t + LM )ηM (X1(s), . . . ,XM (s), s, J(s)) ds

]
−

M∑
m=1

E0

[ ∫ S∧τ

0
∂nmη

M (X1(s), . . . ,XM (s), s, J(s)) dKm(s)

]
.

(35)

As before, by (27), (29), and the definitions of τ and ηM , we have that the right-hand side of
(35) is zero and thus

ηM (x1, . . . ,xM , 0, j) = E0

[
ηM (X1(S ∧ τ), . . . ,XM (S ∧ τ), S ∧ τ, J(S ∧ τ))

]
.(36)

Recalling the definition of ηM , (36) becomes

pMj (x1, . . . ,xM , S) = E0

[
pMJ(S)(X1(S), . . . ,XM (S), 0)1S<τ

]
+ E0

[
pMJ(τ)(X1(τ), . . . ,XM (τ), S − τ)1τ≤S

]
.

(37)

By the initial condition in (31) and the definition of τ , the first term on the right-hand side
of (37) is the probability that none of the M particles exit before time S,

P
(
∩Mm=1 {Xm(t) ∈ U}

∣∣X1(0) = x1, . . . ,XM (0) = xM , J(0) = j
)
.

By (30), the inductive hypothesis, and the strong Markov property, the second term is the
probability that the number of particles that exit before time S is between 1 and M − 1.
Summing these two terms completes the proof.

The following theorem gives the probability that all M particles exit the domain through
the same piece of the boundary.

Theorem 12 (hitting probability). Let M be a positive integer. For each M∈ {1, . . . ,M},
assume that the functions {πMi (x1, . . . ,xM)}i∈I

πMi : ŪM → [0, 1]

are twice continuously differentiable solutions to the PDE

0 = LMπMi for (x1, . . . ,xM) ∈ UM,(38)
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where LM is the operator defined in (28).
For some given Γ0 ⊂ ∂U , assume that the following boundary conditions are satisfied for

each M∈ {1, . . . ,M}:

∂nmπ
M
i (x1, . . . ,xM) = 0, xm ∈ Γref

i ,(39)

πMi (x1, . . . ,xM) = 0, xm ∈ Γabs
i /Γ0,(40)

πMi (x1, . . . ,xM) = πM−1i (x1, . . . ,xm−1,xm+1, . . . ,xM), xm ∈ Γabs
i ∩ Γ0,(41)

where ∂nm denotes the normal derivative with respect to the mth spatial variable xm, and
π0i ≡ 1 for each i.

Then πMj (x1, . . . ,xM ) gives the probability that all M particles exit through Γ0 ⊂ ∂U given

that they start at positions x1, . . . ,xM and J(0) = j. That is, πMj (x1, . . . ,xM ) is equal to

P
(
∩Mm=1

{
lim
t→∞

Xm(t) ∈ Γ0

}∣∣X1(0) = x1, . . . ,XM (0) = xM , J(0) = j
)
.

Proof. We prove the theorem by induction on the number of particles, so we first consider
the base case of M = 1. Denote π1j (x) by π1(x, j), and let E0 denote expectation conditioned
on X1(0) = x1 and J(0) = j. By the generalized Ito formula, we have that

E0

[
π1(X1(t ∧ τ1), J(t ∧ τ1))

]
− π1(x1, j)

= E0

[ ∫ t∧τ1

0
L1π1(X1(s), J(s)) ds

]
− E0

[ ∫ t∧τ1

0
∂nπ

1(X1(s), J(s)) dK1(s)

]
.

(42)

The PDE in (38), the no flux boundary conditions in (39), and the definition of τ1 ensure that
the right-hand side of (42) is zero. Hence,

π1(x1, j) = E0

[
π1(X1(t ∧ τ1), J(t ∧ τ1))

]
.

Taking t→∞ and consulting (40) and (41) completes the proof for M = 1.
Now suppose M ≥ 2, and let τ be the time that the first particle exits the domain

τ := inf
1≤m≤M

τm.

Denote πMj (y1, . . . ,yM ) by πM (y1, . . . ,yM , j), and let E0 denote expectation conditioned on
X1(0) = x1, . . . , XM (0) = xM , and J(0) = j. Again by the generalized Ito formula, we have
that

E0

[
πM (X1(t ∧ τ), . . . ,XM (t ∧ τ), J(t ∧ τ))

]
− πM (x1, . . . ,xM , j)

= E0

[ ∫ t∧τ

0
LMπM (X1(s), . . . ,XM (s), J(s)) ds

]
−

M∑
m=1

E0

[ ∫ t∧τ

0
∂nmπ

M (X1(s), . . . ,XM (s), J(s)) dKm(s)

]
.

(43)

As before, by (38), (39), and the definition of τ , we have that (43) becomes

πM (x1, . . . ,xM , j) = E0

[
πM (X1(t ∧ τ), . . . ,XM (t ∧ τ), J(t ∧ τ))

]
.

Taking t → ∞, consulting (40) and (41), and using the strong Markov property and the
inductive hypothesis completes the proof.
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A similar argument gives the mean first passage time of the last particle to exit.

Theorem 13 (MFPT of last particle). Let M be a positive integer. For each M ∈
{1, . . . ,M}, assume that the functions {wMi (x1, . . . ,xM)}i∈I

wMi : ŪM → [0,∞)

are twice continuously differentiable solutions to the PDE

−1 = LMwMi for (x1, . . . ,xM) ∈ UM,

where LM is the operator defined in (28).
Assume that the following boundary conditions are satisfied for each M∈ {1, . . . ,M}:

∂nmw
M
i (x1, . . . ,xM) = 0, xm ∈ Γref

i ,

wMi (x1, . . . ,xM) = wM−1i (x1, . . . ,xm−1,xm+1, . . . ,xM), xm ∈ Γabs
i ,

where ∂nm denotes the normal derivative with respect to the mth spatial variable xm and
w0
i ≡ 0 for each i.

Then wMj (x1, . . . ,xM ) gives the mean first passage time of the last of M particles to
exit the domain given that they start at positions x1, . . . ,xM and J(0) = j. That is, if
S := sup1≤m≤M τm, then

wMj (x1, . . . ,xM ) = E[S|X1(0) = x1, . . . ,XM (0) = xM , J(0) = j].

Proof. The proof is analogous to the proof of Theorem 12.

3.2. SDE example.

Example 14 (gated target versus gated ligands). As some cellular reactions depend on
the arrival of diffusing ligands to small targets, many works seek to calculate the mean first
passage time of a diffusing particle to a small target (the so-called narrow escape problem
[11, 17, 27, 33, 37]). If, however, the diffusing ligands or the target change conformational
state and reaction is only possible in some states, then the theory must be adjusted [6, 7, 9].
Indeed, such reactions (known as “gated” reactions) occur in a number of biological and
biochemical contexts, including medical therapies that block chemical reactions [39], diffusing
enzymes that switch between an active and an inactive state, the binding of a transcription
factor to a DNA promoter [2], and the diffusion of ions through stochastically gated channels
[30]. Intermittent search processes can also fit into this framework [4].

The situation gets more interesting if there are multiple diffusing ligands. If there is only
one diffusing ligand, then it does not matter if it is the state of the ligand or of the target
that determines the possibility of reaction. However, if there is more than one ligand, then
these two cases become significantly different. This difference was first pointed out in [42]
and further investigated in [5, 28]. The key difference is that if the target changes state, then
all the ligands become correlated even though they move independently. Our theorems in
section 3 for multiple diffusing particles apply to this more delicate case.

As a prototype model, consider M noninteracting ligands that move by pure diffusion in
the interval [0, L] with an absorbing boundary condition at x = 0. Suppose that each ligand
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can bind to a stationary protein at x = L if the protein is in the proper conformational state.
Suppose that the state of the protein is determined by a continuous-time Markov jump process
J(t) ∈ {0, 1}. State 0 is the binding state, and thus all M ligands have an absorbing condition
at x = L if J(t) = 0. If J(t) = 1, then all M ligands reflect at x = L.

Though the ligands are noninteracting, they are nonetheless correlated because they all
diffuse in the presence of the same switching protein. Calculating joint statistics for the
M ligands requires solving a hierarchy of M BVPs on the hypercubes [0, L], [0, L]2, . . . , and
[0, L]M , where the BVPs couple to each other at the boundaries. To illustrate, suppose the
ligands begin at positions x1, . . . , xM and J(0) = 0. By Theorem 8, if Q is the generator of
J(t), then the probability that the mth ligand has not been absorbed by time t is given by

p
(1)
0 (xm, t), where

p
(1)
0 : [0, L]× [0,∞)→ [0, 1] and p

(1)
1 : [0, L]× [0,∞)→ [0, 1]

satisfy

∂t

(
p
(1)
0

p
(1)
1

)
= D∆

(
p
(1)
0

p
(1)
1

)
+Q

(
p
(1)
0

p
(1)
1

)
, y ∈ (0, L), t > 0,(44)

p
(1)
0 (0, t) = p

(1)
1 (0, t) = p

(1)
0 (L, t) = ∂xp

(1)
1 (L, t) = 0, t > 0,(45)

p
(1)
0 = p

(1)
1 = 1, y ∈ (0, 1), t = 0.(46)

Using Theorem 8 again, the probability that either the mth or the nth ligand (or both)

has not been absorbed by time t is given by p
(2)
0 (xm, xn, t), where

p
(2)
0 : [0, L]2 × [0,∞)→ [0, 1] and p

(2)
1 : [0, L]2 × [0,∞)→ [0, 1]

satisfy

∂t

(
p
(2)
0

p
(2)
1

)
= D∆

(
p
(2)
0

p
(2)
1

)
+Q

(
p
(2)
0

p
(2)
1

)
, (y1, y2) ∈ (0, L)× (0, L), t > 0,

with some absorbing and reflecting boundary conditions

p
(2)
0 (0, y2, t) = p

(2)
1 (0, y2, t) = p

(2)
1 (y1, 0, t) = p

(2)
0 (y1, 0, t) = 0,

∂y1p
(2)
1 (L, y2, t) = ∂y2p

(2)
1 (y1, L, t) = 0,

and boundary conditions that couple to p
(1)
0

p
(2)
0 (L, y2, t) = p

(1)
0 (y2, t) and p

(2)
0 (y1, L, t) = p

(1)
0 (y1, t),

and initial conditions given in (46).
Continuing in this manner, Theorem 8 gives that the probability that at least one of the

M ligands has not been absorbed by time t is p
(M)
0 (x1, . . . , xM , t), where

p
(M)
0 : [0, L]M × [0,∞)→ [0, 1] and p

(M)
1 : [0, L]M × [0,∞)→ [0, 1]
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satisfy

∂t

(
p
(M)
0

p
(M)
1

)
= D∆

(
p
(M)
0

p
(M)
1

)
+Q

(
p
(M)
0

p
(M)
1

)
, (y1, . . . , yM ) ∈ (0, L)M , t > 0,

with some boundary conditions that couple to p
(M−1)
0 , which solves a similar BVP on [0, L]M−1

(see Theorem 8 for a precise statement). Theorems 12 and 13 give hierarchies of BVPs for
other joint statistics, and Theorem 1 gives similar hierarchies of BVPs for moments of the
switching PDEs in Examples 4, 5, and 7.

4. Discussion. When studying diffusion in a randomly switching environment, considering
a density of diffusing particles leads to a switching PDE. In contrast, considering only finitely
many diffusing particles leads to a switching SDE. In this paper we developed tools to calculate
statistics for both of these types of processes and have shown how these tools reveal the
dynamics of several biological examples. A number of forthcoming papers on diverse subjects
depend on the tools developed in this paper, and we further anticipate that more models
involving switching PDEs and SDEs will arise and make use of our results.

Finally, our results establish a connection between these two perspectives on diffusion in a
random environment. In particular, moments of switching PDEs correspond to exit statistics
of multiple diffusing particles. That is, the Mth moment of a switching PDE on a domain
U ⊂ Rd satisfies an (M × d)-dimensional PDE on UM that couples to the M − 1 moments on
the boundary (Theorem 1). Similarly, exit statistics for M particles following a switching SDE
in U ⊂ Rd satisfy an (M×d)-dimensional PDE on UM that couples to exit statistics for M−1
particles on the boundary (Theorems 8–13). To illustrate the correspondence concretely, if
in Example 5 we let c = 0, let the initial condition be u(x, 0) = 1, and let α = β (so that
the generator of the Markov chain controlling the switching boundary condition is equal to
its transpose), then the Mth moment of that switching PDE is the survival probability of M
particles diffusing in a randomly switching environment, as described in Example 14 (letting
the Markov chain controlling the switching there be the same as in Example 5).

The fact that some connection exists between these two perspectives on diffusion in a
random environment is not surprising. Indeed, connections between potential theory and
Brownian motion have a long history [13, 19, 20]. However, the precise correspondence elu-
cidated here was not expected. The utility of this correspondence is that it allows one to
go back and forth between the two perspectives in order to exploit the advantages of each
perspective [10].

Appendix. In this appendix, we discuss verifying that the examples in section 2.2 satisfy
the necessary hypotheses. First, we consider Examples 4 and 5 together. For both of these
examples, the existence of such a process satisfying assumptions 1–4 follows immediately
from the regularity of solutions to the one-dimensional heat equation on finite intervals (for a
detailed construction of such a process, see [25]). The existence of the bound in assumption 5
follows from standard estimates on solutions to the heat equation (for example, Theorem 9
on page 61 of [14] combined with the maximum principle gives such a bound).

Assumption 6 is verified by analyzing the spectral decompositions of the associated solution
operators. For concreteness, consider Example 4. Fix a time t > 0, and let σ ≥ 0 denote the



BVPS FOR STATS OF DIFFUSION IN RANDOM ENVIRONMENTS 1431

amount of time since the last switch (known in renewal theory as the age). Then, u(x, t) can
be written as

u(x, t) = (1− J(t))eAqσu(x, t− σ)

+ J(t)

(
eAfσ(u(x, t− σ)− h) +

∫ σ

0
eAf (σ−s)Dhxx ds+ h

)
,

(A.1)

where eAqt and eAf t are the C0-semigroups generated by the self-adjoint operators

Aqu := ∆u if u ∈ D(Aq) :=

{
φ ∈ H2(0, L) :

∂φ

∂x
(0) = 0 = φ(L)

}
,

Afu := ∆u if u ∈ D(Af ) :=

{
φ ∈ H2(0, L) :

∂φ

∂x
(0) = 0 =

∂φ

∂x
(L)

}
,

and h(x) := 2L
π δ[1− cos( π

2Lx)].
If we let {−αk}k≥1 and {ak}k≥1 denote the eigenvalues and eigenvectors of Aq, then we

have the almost sure bound∥∥∥∥ ddxeAqσu(x, t− σ)

∥∥∥∥
∞
≤
∥∥a1∥∥∞ ∞∑

k=1

e−αkσ|〈ak, u(x, t− σ)〉|
√
αk/D,

where 〈·, ·〉 denotes the L2[0, L] inner product and ‖ · ‖∞ denotes the L∞[0, L] norm. Using
the eigendecompositions of Aq and Af , it is straightforward to show that

Ee−αkσ|〈ak, u(x, t− σ)〉| ∼ 1/k3 as k →∞.

A similar argument shows that there exists a random variable with finite expectation that
almost surely bounds the second term in (A.1). Verifying assumption 6 for Example 5 is
similar.

Moving to Example 6, checking assumptions 1–4 is the same as the examples above. Trying
to verify assumptions 5 and 6 is more difficult since the boundary conditions are nonlocal and
the operators involved are not self-adjoint. We currently do not know how to verify these
assumptions, but we remark that the conclusions of Theorem 1 are in complete agreement
with Monte Carlo simulations (see Figure 3).

Example 7 requires only a slight generalization of Theorem 1. The PDE in (23) follows
from exactly the same argument used in Theorem 1 to exchange differentiation with expec-
tation (the necessary bound in Assumption 5 is obtained again by Theorem 9 on page 61 of
[14] combined with the maximum principle). The boundary conditions in (24) are immediate.
The interface conditions in (25) follow from exchanging limits with expectation, the necessary
bounds coming from an argument similar to the one used above to verify assumption 6 for
Example 4.
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