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Abstract. In volume transmission, neurons in one brain nucleus send their

axons to a second nucleus where neurotransmitter is released into the extra-

cellular space. One would like methods to calculate the average amount of
neurotransmitter at different parts of the extracellular space, depending on

neural properties and the geometry of the projections and the extracellular

space. This question is interesting mathematically because the neuron termi-
nals are both the sources (when they are firing) and the sinks (when they are

quiescent) of neurotransmitter. We show how to formulate the questions as

boundary value problems for the heat equation with stochastically switching
boundary conditions. In one space dimension, we derive explicit formulas for

the average concentration in terms of the parameters of the problems in two

simple prototype examples and then explain how the same methods can be
used to solve the general problem. Applications of the mathematical results to

the neuroscience context are discussed.

1. Introduction. A fundamental mechanism by which neurons convey information
is one-to-one neural transmission, in which a neuron fires an action potential that
travels down its axon to a synapse that is adjacent to the cell body or a dendrite of a
second neuron. The arrival of the action potential at the synapse causes biochemical
changes that result in neurotransmitter being released into the synaptic cleft where
it diffuses to the post-synaptic membrane (i.e. the 2nd neuron), binds to receptors,
and tends to make the second neuron fire or not fire depending on whether the
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neurotransmitter is excitatory or inhibitory. In this type of neural transmission,
commonly called electrophysiological, the “purpose” is to convey the electrical signal
from one neuron to the next. The role of biochemistry (in the synapse and in the
synaptic cleft) is simply to facilitate the electrophysiology.

However, neurons convey information by another mechanism as well. Certain
collections of neurons that have the same neurotransmitter can project to a distant
volume (a nucleus or part of a nucleus) in the brain and when they fire they in-
crease the concentration of the neurotransmitter in the extracellular space in the
distant volume. The increased concentration modulates the electrophysiological
neural transmission in the distant region by binding to receptors on the cells in the
target region. This kind of neural activity is called volume transmission [11, 19].
It is also called neuromodulation because the effect of the neurotransmitter is the
modulation of one-to-one transmission by other neurons or synapses in the pro-
jection region. There are many important examples of volume transmission such
as the dopaminergic projection from the substantia nigra to the striatum [6], the
serotonergic projection from the dorsal raphe nucleus to the striatum [2, 3], and
projections of norepinephrine neurons from the locus coeruleus to the cortex [11].
The serotonin and dopamine projections are crucial to motor control and Parkin-
son’s disease, and the norepinephrine projection to the initiation and maintenance
of wakefulness.

The purpose of this paper is to use recently developed mathematical machinery
on the stochastic switching of boundary conditions in PDEs [14, 16] to understand
certain aspects of volume transmission. Suppose that a large number of neurons
with the same neurotransmitter project randomly to a distant volume where they
release neurotransmitter into the extracellular space. Each neural terminal in the
projection region is a source of neurotransmitter when the neuron fires and is a
sink for neurotransmitter otherwise because transporters carry the neurotransmit-
ter back into the terminals. Given the statistics of the stochastic firing of each
neuron, how can we calculate the average neurotransmitter level over the whole
extracellular space? How can we calculate the spatial dependence of expected neu-
rotransmitter level? How do the answers to these questions depend on firing rates,
amounts released, average distances between terminals, diffusion constants, and
other important parameters? In this paper, we answer these questions in one space
dimension. Of course, one space dimension is unphysiological, but the techniques
and the answers (some of them surprising) give insight into what can be expected
in higher dimensions.

In Section 2 we consider the following two simple prototype problems. Let u(x, t)
be the concentration of neurotransmitter in the interval [0, L]. For the first problem,
we consider the stochastic process that solves

∂tu = D∆u in (0, L) (1)

and switches randomly between the boundary conditions

(q)

{
∂xu(0, t) = 0

u(L, t) = 0
and (f)

{
∂xu(0, t) = 0

∂xu(L, t) = c > 0.
(2)

Thus, at x = 0 there is a hard wall through which neurotransmitter cannot diffuse.
At x = L the boundary condition switches between firing (f) where neurotrans-
mitter is released into the interval at a constant rate, c, and quiescence (q) where
it is reabsorbed by the terminal. We are interested in computing the asymptotic
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behavior of Eu(x, t) as t→∞. We will see that Eu(x, t) is asymptotically constant
in x under general assumptions on the distributions of the switching times, and we
compute an explicit, simple formula for this constant in terms of D, L, c, and the
switching constants if the switching is at exponentially distributed times. Finally,
we numerically compute the spatial dependence of the standard deviation.

For the second case, we derive explicit formulas for Eu(x, t) as t → ∞ for the
problem where u(x, t) satisfies (1) and at exponentially distributed times switches
between the boundary conditions:

(q)

{
u(0, t) = 0

u(L, t) = 0
and (f)

{
u(0, t) = 0

∂xu(L, t) = c > 0.
(3)

This models the situation where there is a neuron at x = L that switches stochas-
tically between firing (f) and quiescence (q) while there is a glial cell at x = 0 that
absorbs neurotransmitter. Again, in addition to finding a formula for the mean we
compute the standard deviation numerically.

In Section 3 we consider the much more general stochastic process where u(x, t)
satisfies (1) but now there are neurons at both x = 0 and x = L. Both neurons
fire stochastically and independently with exponential rates that are different and
release rates, c0, cL, that are different. Methods used in Section 2 and from [14]
are used to show that limt→∞ Eu(x, t) can be computed in terms of all the given
parameters of the problem by solving a set of eight linear equations.

Section 4 is devoted to extracting information about volume transmission from
the explicit formulas for limt→∞ Eu(x, t) derived in Sections 2 and 3. In the Dis-
cussion we explain why the questions in two and three dimensions are much more
difficult and indicate some of our preliminary results.

2. Simple prototype problems. We use two approaches to the technical calcu-
lations. The “iterated random function” method, Section 2.1, is very general and
allows us to calculate the limits with very weak restrictions on the distribution
of switching times. The “moment” method, Section 2.2, assumes that switching
times are exponentially distributed. This allows us to use Markov methods and to
compute standard deviations.

2.1. Iterative random function approach. We wish to consider the L2[0, L]-
valued stochastic process that solves (1) and (2). To define the process {u(x, t)}t≥0

and cast it in the setting of [16], we define two self-adjoint operators:

Aqu := ∆u if u ∈ D(Aq) :=
{
φ ∈ H2(0, L) :

∂φ

∂x
(0) = 0 = φ(L)

}
Afu := ∆u if u ∈ D(Af ) :=

{
φ ∈ H2(0, L) :

∂φ

∂x
(0) = 0 =

∂φ

∂x
(L)
}
.

The operators Aq and Af generate C0-semigroups on L2[0, L], which we denote
respectively by eAqt and eAf t.

The solution operator Φtq : L2[0, L]→ L2[0, L] for the heat equation (1) with the
(q) boundary conditions in (2) is given by

Φtq(g) := eAqtg. (4)

The eigenvalues and eigenvectors for Aq are

−αk = −D
( (2k − 1)π

2L

)2

and ak(x) =

√
2

L
cos
( (2k − 1)π

2L
x
)

for k ≥ 1. (5)
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If we let h(x) := 2L
π c
[
1− cos( π

2Lx)
]
, then the solution operator for the heat

equation with the (f) boundary conditions in (2) is

Φtf (g) = eAf t(g − h) +

∫ t

0

eAf (t−s)D∂xxh ds+ h. (6)

The eigenvalues and eigenvectors for Af are

−βk = −D
(kπ
L

)2

and bk(x) =

√
2

L
cos
(kπ
L
x
)

for k ≥ 1, (7)

with β0 = 0 and b0(x) =
√

1/L.
In order to define the random switching times, we define the set Ω of all possible

switching environments and equip it with a probability measure. Let µf and µq
be two continuous probability distributions on the positive real line with finite first
and second moments. We further assume that if τq is drawn from µq, then

∞∑
k=1

E[e−αkτq ] <∞. (8)

We note that this is satisfied if the probability density of µq is bounded in a neigh-
borhood of 0. Define each switching environment, ω ∈ Ω, as the bi-infinite sequence
ω = {ωk}k∈Z, where each ωk is a pair of non-negative real numbers, (τkf , τ

k
q ), drawn

from µf × µq. That is, (τkf , τ
k
q ) is an R2-valued random variable drawn from the

product measure µf × µq. We take P to be the infinite product measure generated
by µf ×µq and let E denote the corresponding expectation. Summarizing notation,
we have that

ω = (. . . , ω−1, ω0, ω1, . . . ) =
(
. . . , (τ−1

f , τ−1
q ), (τ0

f , τ
0
q ), (τ1

f , τ
1
q ), . . .

)
∈ Ω. (9)

To define the stochastic process {u(x, t)}t≥0 we need some notation from renewal
theory. For each ω ∈ Ω and natural number n, define the elapsed time after n pairs
of switches

Sn :=

n∑
k=1

(
τkf + τkq

)
(10)

with S0 := 0. Define the number of pairs of switches before time t

N(t) := max{n ≥ 0 : Sn ≤ t}.

We also define the state process J(t) which indicates the current boundary condition

J(t) :=

{
0 SN(t) ≤ t < SN(t) + τ

N(t)+1
f

1 SN(t) + τ
N(t)+1
f ≤ t.

(11)

Finally, for t ≥ 0, define the elapsed time since the last switch (often called the age)
by

a(t) := J(t)(t− (SN(t) + τ
N(t)+1
f )) + (1− J(t))(t− SN(t)).

For each ω ∈ Ω, g ∈ L2[0, L], and integers k, n, define the map

ϕk,n(g) :=
(
Φ
τn
q
q ◦ Φ

τn
f

f

)
◦ · · · ◦

(
Φ
τk
q
q ◦ Φ

τk
f

f

)
(g).
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For u0 ∈ L2[0, L], ω ∈ Ω, and t ≥ 0, define our continuous-time L2[0, L]-valued
process {u(x, t)}t≥0 by

u(t, ω) := J(t)Φa(t)
q ◦ Φ

τ
N(t)+1
f

f (ϕ1,N(t)(u0)) + (1− J(t))Φ
a(t)
f (ϕ1,N(t)(u0)). (12)

Since the switching time distributions are continuous, they are non-arithmetic
(also known as non-lattice). Thus, by Theorem 2.4 of [16], we have that u(x, t)
converges in distribution as t→∞ to an L2[0, L]-valued random variable, ū(x).

In order to describe this limit ū, we define the random variables

Yf := lim
n→∞

ϕ−n,0(g) and Yq := lim
n→∞

Φτqq (ϕ−n,0(g)),

where g ∈ L2[0, L] and τq is an independent draw from µq. By Proposition 2.1 in
[16], the random variables Yf and Yq exist almost surely and are independent of
g. (We remark that random variables such as Yf and Yq are often called random
pullback attractors because they take an initial condition and pull it back to the
infinite past [7, 17, 20]). By Theorem 2.4 in [16], we have that ū is given by

ξΦa
q

q (Yf ) + (1− ξ)Φa
f

f (Yq), (13)

where ξ is an independent Bernoulli random variable with parameter

ρ = P(ξ = 1) = Eτq/(Eτq + Eτf ),

and aq and af are two independent random variables taking values on the positive
real line with cumulative distribution functions given by

P(ai ≤ x) =
1

Eτi

∫ x

0

[1− P(τi ≤ s)] ds, for i = q, f. (14)

Equation (13) has a simple interpretation. It means that in order to find the
distribution of the solution one must do the following. First, flip a coin with pa-
rameter ρ to decide the current boundary condition (either (q) or (f)). If it is (q),
then apply the map Φq to the pullback Yf for time aq, where aq is the amount of
time since the last switch given that Φq is currently being applied. If it is (f), then
apply Φf to Yq for time af .

In order to extend some further results in [16], we must overcome two barriers.
First, our process {u(x, t)}t≥0 defined in equation (12) does not have a deterministic
bound like the processes considered in [16]. Second, we need to make statements
about the spatial derivative of our process. The following few lemmas collect the
necessary estimates to overcome these difficulties.

Here and throughout, we use ‖ ·‖ to denote the L2[0, L] norm and ‖ ·‖p to denote
the Lp[0, L] norm. We use 〈·, ·〉 to denote the L2[0, L] inner product.

Lemma 2.1. The process {‖u(t)‖}t≥0 is uniformly integrable. That is, for every
ε > 0 there exists a K > 0 so that

E
[
‖u(t)‖1‖u(t)‖≥K

]
< ε for all t ≥ 0,

where 1‖u(t)‖≥K denotes the indicator function on the event ‖u(t)‖ ≥ K.

Proof. It is straightforward to see from the definitions in equations (4) and (6) that
there exists constants α > 0, K1, and K2 such that

‖Φtq(g)‖ ≤ e−αt‖g‖ and ‖Φtf (g)‖ ≤ ‖g‖+K1t+K2 for any t ≥ 0, g ∈ L2[0, L].
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Thus, if we define a process z(t) ∈ R by equation (12) with Φtq and Φtf replaced by
the maps

Ψt
q(z) = e−αtz and Ψt

f (z) = z +K1t+K2,

with initial condition z0 := ‖u0‖, then ‖u(t)‖ ≤ z(t) for all t almost surely. Hence,
if {z(t)}t≥0 is uniformly integrable, then {‖u(t)‖}t≥0 is uniformly integrable. We
will prove the following condition that implies uniform integrability

sup
t≥0

E[z2(t)] <∞. (15)

Recalling the definition of Sn from equation (10), observe that

z2(Sn) =
[
z0

n∏
m=1

e−ατ
m
q +

n∑
j=1

(K1τ
j
f +K2)

n∏
k=j

e−ατ
k
q

]2
=
[
z0

n∏
m=1

e−ατ
m
q

]2
+ 2
[
z0

n∏
m=1

e−ατ
m
q

][ n∑
j=1

(K1τ
j
f +K2)

n∏
k=j

e−ατ
k
q

]
+ 2

∑
1≤i≤j≤n

(K1τ
i
f +K2)(K1τ

j
f +K2)

( n∏
l=i

e−ατ
l
q
)( n∏

k=j

e−ατ
k
q
)

=: T1 + T2 + T3. (16)

It is easy to see that the first term in (16) satisfies

ET1 ≤ z2
0 . (17)

Further, since the random times are independent, we can bound the expectation of
the second term in (16)

ET2 ≤ 2z0(K1E[τf ] +K2)

n∑
j=1

(
E[e−ατq ]

)n−j+1 ≤ 2z0(K1E[τf ] +K2)
E[e−ατq ]

1− E[e−ατq ]
,

(18)

where τf and τq are drawn from µf and µq, respectively.
To bound the expectation of the third term in (16), observe that

T3 = 2
∑

1≤i≤j≤n

e−ατ
i
q (K1τ

i
f +K2)e−2ατj

q (K1τ
j
f +K2)

( j−1∏
l=i+1

e−ατ
l
q
)( n∏

k=j+1

e−2ατk
q
)
.

Hence, if we let

C := (K1E[τf ] +K2)2 + E(K1τf +K2)2,

then C <∞ since τf has finite first and second moments by assumption. Thus

ET3 ≤ 2C
∑

1≤i≤j≤n

(
E[e−ατq ]

)n−1−i
= 2C

n∑
i=1

(n− i+ 1)
(
E[e−ατq ]

)n−1−i

≤ 2C

E[e−ατq ](1− E[e−ατq ])
. (19)

Putting the bounds in equations (17), (18), and (19) together with (16), we see
that E[z2(Sn)] is bounded above independently of n. A similar calculation shows
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that E[z(Sn)] is also bounded above independently of n. Further, it is immediate
that at any time t ≥ 0, we have that

z(t) ≤ z(SN(t)) +K1τ
N(t)+1
f +K2.

Equation (15) follows.

A similar argument gives the following lemma.

Lemma 2.2. The random variables ‖Yq‖, ‖Yf‖, and ‖ū‖ have finite expectation.

In order to make certain statements about spatial derivatives, we need the fol-
lowing lemma.

Lemma 2.3. The random variables ‖Yq‖∞ and ‖Yf‖∞ have finite expectation.

Proof. By Proposition 2.2 in [16], if τf and τq are independent draws from µf and
µq, then we have the following equality in distribution

Yq =d Φτqq (Yf ) and Yf =d Φ
τf
f (Yq). (20)

Hence, recalling the eigenvalues and eigenvectors in (5), we have that

E‖Yq‖∞ = E
∥∥∥ ∞∑
k=1

e−αkτq 〈ak, Yf 〉ak
∥∥∥
∞
≤ ‖a1‖∞E‖Yf‖

∞∑
k=1

E[e−αkτq ] <∞ (21)

by independence, the Cauchy-Schwarz inequality, the assumption in equation (8),
Lemma 2.2, and the fact that ‖ak‖ = 1 and ‖ak‖∞ = ‖a1‖∞ for all k. Further, by
equation (20) we have that

E‖Yf‖∞ = E
∥∥∥eAfτf (Yq − h) +

∫ τf

0

eAf (τf−s)D∂xxh ds+ h
∥∥∥
∞

≤ E||Yq||∞ + E
∥∥∥− eAfτfh+

∫ τf

0

eAf (τf−s)D∂xxh ds+ h
∥∥∥
∞
<∞

by equation (21) and the assumption that τf has finite expectation.

In the following theorem, we prove that the mean of u(x, t) is constant in x at
large time. To see intuitively why this is true, first take the expectation of (1)
and interchange expectation with differentiation to show that the mean satisfies the
heat equation. Next, since u(x, t) converges in distribution at large time, the time
derivative of the mean vanishes at large time and thus the mean satisfies the steady
state heat equation and is therefore linear. Finally, since the boundary condition is
always no flux at x = 0, the mean satisfies a no flux condition at x = 0. Combining
these last two points forces the mean to be constant. The proof of the theorem
makes this argument rigorous.

In the following theorem and in the remainder of this subsection, we use E
to denote the Bochner integral of L2[0, L]-valued random variables and not the
pointwise expectation of random functions.

Theorem 2.4. Assume that the switching time distributions, µq and µf , are con-
tinuous, have finite first and second moments, and satisfy equation (8). Then the
process u(x, t) converges in distribution as t → ∞ to an L2[0, L]-valued random
variable, ū(x), whose expectation is equal to a constant for almost every x ∈ [0, L].
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Proof. Let g ∈ L2[0, L] and let ε > 0. By Lemma 2.1, there exists a K > 0 so that

E
[
‖u(t)‖1‖u(t)‖≥K

]
+ E

[
‖ū‖1‖ū‖≥K

]
< ε/‖g‖ for all t ≥ 0. (22)

It follows from Theorem 2.4 in [16] and the definition of convergence in distribution
that there exists a T > 0 so that∣∣E〈g, u(t)〉1‖u(t)‖<K − E〈g, ū〉1‖ū‖<K

∣∣ < ε for all t ≥ T, (23)

where 〈·, ·〉 denotes the L2[0, L] inner product. Combining (22) and (23) with the
Cauchy-Schwarz inequality, we have that∣∣E〈g, u(t)〉 − E〈g, ū〉

∣∣ < 2ε if t ≥ T.

Thus we conclude that

E〈g, u(t)〉 → E〈g, ū〉 as t→∞. (24)

Since taking the inner product against g is a bounded linear operator on L2[0, L],
we can exchange expectation with the inner product in equation (24) and obtain
that Eu(t)→ Eū weakly in L2[0, L]. Let φ ∈ D(Aq)∩D(Af ). By definition of weak
convergence in L2[0, L], we have that

〈φ,Eu(t)〉 → 〈φ,Eū〉 and 〈∆φ,Eu(t)〉 → 〈∆φ,Eū〉 as t→∞.

By Theorem 3.1 in [16], we have that

d

dt
〈φ,Eu(t)〉 = 〈∆φ,Eu(t)〉 for all t > 0. (25)

Thus, both 〈φ,Eu(t)〉 and d
dt 〈φ,Eu(t)〉 converge as t → ∞ and thus d

dt 〈φ,Eu(t)〉
must converge to 0. Hence, 〈∆φ,Eū〉 = 0 and so Eū is a weak solution to Laplace’s
equation on the interval [0, L]. But by the regularity of ∆ on [0, L], we have that
Eū is actually a classical solution and thus it is the affine function

(Eū)(x) = sx+M, for constants s,M∈ R.

It remains to show that s = 0. Let {φn}∞n=1 be such that φn ∈ C∞0 (0, L), φn ≥ 0,
and ‖φn‖1 = 1 for each n and

lim
n→∞

〈φn, g〉 = g(0) (26)

for each g ∈ C[0, L]. Since ū is almost surely smooth and d
dx ū(0) = 0 almost surely,

integration by parts gives that

lim
n→∞

〈 d
dx
φn, ū〉 = − lim

n→∞
〈φn,

d

dx
ū〉 = 0 almost surely. (27)

Further, since taking the inner product with d
dxφn is a bounded linear functional in

L2[0, L] and since Eū = sx+M, integration by parts gives

lim
n→∞

E〈 d
dx
φn, ū〉 = lim

n→∞
〈 d
dx
φn,Eū〉 = − lim

n→∞
〈φn,

d

dx
Eū〉 = −s. (28)

Thus, to show that s = 0, we only need to show that we can exchange the expecta-
tion with the limit in equation (28) and then apply equation (27). To do this, we
need to find an integrable random variable M such that∥∥ d

dx
ū
∥∥
∞ < M almost surely. (29)
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Recalling the eigenvalues and eigenvectors in equation (4), observe that∥∥ d
dx

Φa
q

q (Yf )
∥∥
∞ ≤ ‖a1‖∞

∞∑
k=1

e−aka
q

|〈ak, Yf 〉|
√
αk/D almost surely, (30)

since ‖ak‖∞ = ‖a1‖∞ for all k. Thus, if we let M1 be the righthand side of (30),
then M1 bounds ‖ ddxΦa

q

q (Yf )‖∞. We now check that M1 has finite expectation.
Using (20), (6), (5), and Lemma 2.3, it is straightforward to obtain that

E|〈ak, Yf 〉|
√
αk/D = O(1) as k →∞.

Further, it follows from (14) that
∞∑
k=1

E[e−αka
q

] <∞.

Since aq and Yf in (30) are independent, M1 has finite expectation. A similar
argument shows that there exists a random variable M2 that almost surely bounds

‖ ddxΦa
f

f (Yq)‖∞ and has finite expectation.

Recalling the definition of ū from equation (13), we have that M := M1 + M2

satisfies equation (29) and EM <∞. Thus, by the dominated convergence theorem
and equations (27) and (28), we have that

0 = E lim
n→∞

〈φn,
d

dx
ū〉 = lim

n→∞
E〈φn,

d

dx
ū〉 = −s,

and the proof is complete.

Now that we have shown that the expectation of the process at large time is
constant in space for very general switching time distributions, we compute this
constant in the case of exponential switching times in the following theorem.

Theorem 2.5. If the switching time distributions, µf and µq, are exponential with
respective rate parameters rf and rq, then the constant value of Eū is given by

M = c
µ

η
coth(Lη), (31)

where µ := rq/rf and η :=
√

(rf + rq)/D.

Proof. By Corollary 2.5 in [16], ū is given by

ξYq + (1− ξ)Yf ,
where ξ is an independent Bernoulli random variable with parameter

ρ := P(ξ = 1) = rf/(rq + rf ).

Hence, by Theorem 2.4 above, there exists a M∈ R such that

M = Eū = ρEYq + (1− ρ)EYf . (32)

We will use equation (32) to find M. Let {φn}∞n=1 be such that φn ∈ C∞0 (0, L),
φn ≥ 0, and ‖φn‖1 = 1 for each n and

lim
n→∞

〈φn, g〉 = g(L) (33)

for each g ∈ C[0, L]. Then, by equation (32), we have that for each n

M = ρ〈φn,EYq〉+ (1− ρ)
〈
φn,

∞∑
k=0

〈bk,EYf 〉bk
〉
, (34)
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where {bk}k≥0 are the eigenvectors of Af given in equation (7).
We want to take the limit as n → ∞ in equation (34). Since Yq is almost

surely smooth and Yq(L) = 0 almost surely, using Lemma 2.3 along with Holder’s
inequality and the dominated convergence theorem gives

lim
n→∞

〈φn,EYq〉 = 0. (35)

Next, we want to show that

(1− ρ) lim
n→∞

〈
φn,

∞∑
k=0

〈bk,EYf 〉bk
〉

= (1− ρ)

∞∑
k=0

〈bk,EYf 〉bk(L). (36)

In order to show this, we need to prove that

(1− ρ)

∞∑
k=0

〈bk,EYf 〉bk(x) (37)

converges uniformly in x. To do this, we now find an expression for 〈bk,EYf 〉.
By equation (32), we have that

〈bk,M〉 = ρ〈bk,EYq〉+ (1− ρ)〈bk,EYf 〉 (38)

for all integers k ≥ 0. By Proposition 2.2 in [16], if τf is an independent draw from
µf , then we have the following equality in distribution

Yf =d Φ
τf
f (Yq).

Hence, recalling the definition of Φf in equation (6) and letting {βk}k≥0 be the
eigenvalues of Af given in equation (7), we have that for k ≥ 1

〈b0,EYf 〉 = 〈b0,EYq〉+ Eτ0〈b0, D∂xxh〉

〈bk,EYf 〉 = E[e−βkτq ]〈bk,EYq〉+ (1− E[e−βkτ0 ])(〈bk, h〉+
1

βk
〈bk, D∂xxh〉).

(39)

After solving the system of equations in (38) and (39), the sum in (37) becomes

rq
rf

[
cD

L(rf + rq)
+

∞∑
k=1

( βk
rf + rq + βk

)(
〈bk, h〉+

1

βk
〈bk, D∂xxh〉

)
bk(x)

]
. (40)

Since

〈bk, h〉 =
4
√

2L3/2(−1)k

(4k2 − 1)π2
c and 〈bk, ∂xxh〉 =

√
2L−1/2(−1)k

1− 4k2
c,

equation (40) converges uniformly in x, and thus (36) is verified.
Taking the limit as n→∞ in equation (34) and using equations (35), (36), and

(40) with x = L gives

M =
rq
rfL

[ D

(rf + rq)
+ 2

∞∑
k=1

( Dk2

rf + rq + βk

)( 4

(4k2 − 1)
+

1

k2

1

1− 4k2

)]
c

=
c
√
Drq coth(

L
√
rf+rq√
D

)

rf
√
rf + rq

,

using a simplification found in Mathematica [23].
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2.2. Moment approach. Suppose the switching time distributions µf and µq de-
fined above are exponential with respective rates rf and rq. It follows that the
state process {J(t)}t≥0 defined in equation (11) is a continuous time Markov jump
process on {0, 1} that leaves the firing state (state 0) at rate rf and leaves the
quiescent state (state 1) at rate rq

0
rf


rq

1.

Though the stochastic process {u(x, t)}t≥0 defined above in equation (12) is
constructed as an L2[0, L]-valued process, u(x, t) is actually smooth in x ∈ [0, L] for
each t > 0 by virtue of being a solution to the heat equation. Thus, the process is
well-defined pointwise in [0, L]. That is, for fixed x0 ∈ [0, L]

{u(x0, t)}t≥0 (41)

is a stochastic process taking values in R.
Hence, for t > 0, x ∈ [0, L], and j ∈ {0, 1}, we define

vj(x, t) = E[u(x, t)1J(t)=j ], (42)

where by E we mean the expectation of the R-valued process in (41). Throughout
the remainder of the paper, we use E to denote this pointwise expectation. Assume
that J(t) is initially distributed according to its invariant distribution. The following
proposition follows from Theorem 1 in [14]. The PDE and boundary conditions
satisfied by vi follow from interchanging differentiation with expectation. Thus the
proof in [14] amounts to checking the hypotheses of the dominated convergence
theorem, which follow from standard estimates for the heat equation.

Proposition 1. The functions v0 and v1 defined in equation (42) satisfy the fol-
lowing boundary value problem.

∂tv0 = D∆v0 − rfv0 + rqv1

∂tv1 = D∆v1 + rfv0 − rqv1

with boundary conditions

∂xv0(0, t) = ∂xv1(0, t) = 0, ∂xv0(L, t) = (1− ρ)c, v1(L, t) = 0,

where ρ = rf/(rf + rq) is the proportion of time in the (q) state.

We can solve the boundary value problem in Proposition 1 at steady state to
yield

lim
t→∞

E[u(x, t)] = lim
t→∞

(v0(x, t) + v1(x, t)) = c
µ

η
coth(Lη),

where µ := rq/rf and η :=
√

(rf + rq)/D, which recovers the result found above in
Theorem 2.5.

In addition to finding the mean, we can also find the standard deviation. For
t > 0, (x, y) ∈ [0, L]2, and j ∈ {0, 1}, we define the two-point correlations

Cj(x, y, t) = E[u(x, t)u(y, t)1J(t)=j ]. (44)

The following proposition follows from Theorem 1 in [14].
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Proposition 2. The functions C0 and C1 defined in equation (44) satisfy the fol-
lowing boundary value problem on the square [0, L]2.

∂tC0 = D∆C0 − rfC0 + rqC1

∂tC1 = D∆C1 + rfC0 − rqC1

with boundary conditions that couple to the moments defined in equation (42)

∂xC0(0, y, t) = ∂yC0(x, 0, t) = ∂xC1(0, y, t) = ∂yC1(x, 0, t) = 0

C1(L, y, t) = C1(x, L, t) = 0,

∂xC0(L, y, t) = cv0(y, t), and ∂yC0(x, L, t) = cv0(x, t).

It is straightforward to numerically solve this boundary value problem at steady
state to obtain

lim
t→∞

E[u(x, t)u(y, t)] = lim
t→∞

C0(x, y, t) + C1(x, y, t).

After obtaining this function, we subtract from it the square of the steady state
mean found above to obtain the variance at large time

lim
t→∞

E
[(
u(x, t)− E[u(x, t)]

)2]
.

A plot of the square root of this function (i.e. the standard deviation) is given in
Figure 1 (left). While the mean is constant in space, the standard deviation is much
higher near the switching boundary.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

Equation (2) conditions

mean
standard deviation

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

Equation (3) conditions

mean
standard deviation

Figure 1. Large time pointwise mean and standard deviation for
the process that solves (1) and at exponential times switches be-
tween either the equation (2) conditions (left plot) or the equa-
tion (3) conditions (right plot). The means are given by (31) and
(46) for the left and right plots, respectively. The standard devia-
tion for the left plot is found by numerically solving the boundary
value problem in Proposition 2 at steady state, subtracting the
square of the mean, and then taking the square root. The stan-
dard deviation for the right plot is found analogously. For both
plots, parameters are L = D = rq = 1 and c = rf = 100.
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2.3. Another simple problem. Consider the same switching PDE as above, but
now suppose the boundary condition at x = 0 is always an absorbing Dirichlet
condition, u(0, t) = 0. That is, suppose u(x, t) satisfies the heat equation in the
interval [0, L] and at exponentially distributed random times switches between the
boundary conditions

(q)

{
u(0, t) = 0

u(L, t) = 0
and (f)

{
u(0, t) = 0

∂xu(L, t) = c > 0.

This models the situation where there is a neuron at x = L that switches stochas-
tically between firing (f) and quiescence (q) while there is a glial cell at x = 0 that
absorbs neurotransmitter. Using the methods from subsection 2.2 above, we can cal-
culate the expectation of the solution at large time. In particular, after solving the
steady state version of a boundary value problem similar to that in Proposition 1,
we find that the expected solution at large time is

lim
t→∞

E[u(x, t)] =
(

1 + L
η

µ
coth(Lη)

)−1

cx, (46)

where µ := rq/rf and η :=
√

(rf + rq)/D.
We can also derive the analog of Proposition 2 for this problem in order to find

the standard deviation. The mean and standard deviation is plotted in Figure 1
(right).

3. The general problem. Suppose we now let both ends of the interval switch
independently. That is, suppose u(x, t) satisfies the heat equation in the interval
[0, L] and suppose the boundary condition at x = 0 switches between

u(0, t) = 0 and ∂xu(0, t) = −c0 < 0,

while the boundary condition at x = L switches between

u(L, t) = 0 and ∂xu(L, t) = cL > 0.

This models the situation where there is a neuron at x = L and at x = 0 that fire
independently.

Suppose two independent Markov jump processes control the states of the x = 0
and x = L boundaries. It is straightforward to combine these two independent
Markov processes into a single 4 state Markov process J(t) ∈ {0, 1, 2, 3} with gen-
erator Q. For j ∈ {0, 1, 2, 3} define the functions

vj(x, t) = E[u(x, t)1J(t)=j ]. (47)

Assume that J(t) is initially distributed according to its invariant distribution. The
following proposition follows from Theorem 1 in [14].

Proposition 3. The functions defined above in equation (47) satisfy the PDEs

∂t


v0(x, t)
v1(x, t)
v2(x, t)
v3(x, t)

 = D∆


v0(x, t)
v1(x, t)
v2(x, t)
v3(x, t)

+QT


v0(x, t)
v1(x, t)
v2(x, t)
v3(x, t)

 , (48)
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where QT is the transpose of the generator of the Markov jump process J(t). Further,
the following boundary conditions are satisfied

v0(0, t) = 0 v0(L, t) = 0

∂xv1(0, t) = −c0π1 v1(L, t) = 0

∂xv2(0, t) = −c0π2 ∂xv2(L, t) = cLπ2

v3(0, t) = 0 ∂xv3(L, t) = cLπ3,

where (π0, π1, π2, π3) ∈ R4 is the invariant distribution of the Markov process J(t).

It is straightforward to solve this boundary value problem at steady state to
obtain the mean at large time

lim
t→∞

E[u(x, t)] = lim
t→∞

(
v0(x, t) + v1(x, t) + v2(x, t) + v3(x, t)

)
. (49)

In particular, one can decouple the PDEs in (48) by a change of coordinates using
the eigendecomposition of the generator Q. Then, solving this system and obtaining
an explicit formula for equation (49) reduces to solving a system of 8 linear algebraic
equations.

We omit the explicit formula we find for equation (49) because it is very compli-
cated. However, we will consider the special case where the release rates c0 = cL = c
are the same and the rates of switching between the quiescent and firing states at 0
and L are the same. In this case, the large time mean in equation (49) is constant
in space. To see this, observe that the mean

E[u(x, t)] = v0(x, t) + v1(x, t) + v2(x, t) + v3(x, t) (50)

must satisfy the heat equation by equation (48) since QT has zero column sums.
Thus, the mean must be linear at large time. But then by symmetry, it must be
constant. We can also compute an explicit formula for M, the space independent
mean. Let µ := rq/rf and η :=

√
(rf + rq)/D. Then, M(µ, η, L) = cA/B where:

A = µ
(

sinh(
√

2ηL)(ηL(µ2 + 2) sinh(2ηL) + 2µ(µ2 + 2) cosh(2ηL)

+ 2µ(µ2 − 2)) + 2
√

2ηLµ+ 2
√

2µ cosh(
√

2ηL)(2µ sinh(2ηL)

+ ηL cosh(2ηL))
)
,

B = 2η
(

sinh(
√

2ηL)(µ(µ2 + 2) sinh(2ηL) + ηL(µ2 sinh2(ηL)

+ cosh(2ηL) + 1)) +
√

2µ(µ(cosh((
√

2− 2)ηL)

+ cosh((2 +
√

2)ηL)− 2) + ηL sinh(2ηL) cosh(
√

2ηL))
)
.

4. Neural applications. We will discuss how natural and intuitive the formulas
are that we have derived and discuss applications in neuroscience.

4.1. The simple formulas. Let u(x, t) be the solution of (1) with the switching
boundary conditions (2). This corresponds to a neuron at x = L that releases
neurotransmitter into the interval [0, L] at rate c when it is firing and absorbs
neurotransmitter when it is not firing and there is no flux through x = 0. We
showed that the expectation of u is constant in x as t→∞ and in Theorem 2.5 we
showed that if the switching rates are exponential, then the constant is given by:

M = c
µ

η
cothLη (51)
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where

µ =
rq
rf
, η =

√
rq + rf
D

and rq is the rate of switching from the quiescent state to the firing state and rf is
the rate of switching from the firing state to the quiescent state.

The intuitive reason why the expectation is constant is that if x is far away from
L then it is hard for neurotransmitter to diffuse there without being reabsorbed first,
but once there it is hard to be reabsorbed when the boundary conditions switch
because of the distance to L. It is clear that M should be proportional to c since
c is the rate at which neurotransmitter is put into the interval when the neuron is
firing.

If rq gets larger and/or rf gets smaller then µ will increase and cause M to
increase since the neuron is spending a larger fraction of time in the firing state.
Similarly, if rq gets smaller and/or rf gets larger, both µ and M will decrease
because the neuron is spending a smaller fraction of time firing. But what if we
keep µ constant and scale rq and rf to be large? Then η becomes large so M
approaches 0 since coth is monotone decreasing to 1. This makes sense because it is
very hard for neurotransmitter to escape a small region near L because as soon as
it is released, the boundary conditions switch and it is reabsorbed. More generally,
fast switching between Dirichlet and Neumann always becomes pure Dirichlet if the
proportion of time in each state is fixed [15]. This phenomenon can be understood in
terms of the mean absorption time of a Brownian motion to a switching boundary.
Indeed, for a particle starting on a boundary that switches between reflecting and
absorbing with the proportion of time in each state fixed, the mean absorption time
goes to zero as the switching rate increases [4, 5].

On the other hand, if µ is constant then η gets small as both rq and rf get
small, soM approaches∞. Intuitively, this is because the input is constant in time
when the neuron is firing but the absorption is (approximately) proportional to the
amount in the interval so the input dominates as the switching times become long.
To see why absorption is approximately proportional to the amount in the interval,
first observe from the form of the solution operator in (6) that after being in the
firing state for a long time s, the solution is approximately the product sφ(x) for
some function φ(x). Then, when the boundary condition switches to absorbing, the
form of the solution operator in (4) implies that the amount absorbed before the
next switch will be proportional to s.

The diffusion constant D has the reciprocal effect on η as the sum rq + rf , so
when D get small M also gets small and when D gets large M goes to ∞ for
the reasons given above. Finally, notice that M gets smaller as L increases, which
makes sense because the neurotransmitter is diffusing into a larger region. What is
interesting, however, is that coth(z) asymptotes to 1 as z →∞, which means that
once L is large compared to η the value ofM is almost independent of L,M≈ cµη .

4.2. General formulas. In Section 3 we considered the general problem where
there is a neuron terminal at both ends of the interval, the parameters of the neurons
are different and they switch independently. We showed that limt→∞ Eu(x, t) =M,
which does not depend on x and we indicated how to compute an explicit formula
for M in terms of all the parameters of the problem. We also displayed an explicit
formula for M in the case where the neural parameters were identical. Although
the formula in this special case remains complicated, we can take various limits that
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have biological significance. It is not hard to check that:

lim
η→∞

M(µ, η, L) = 0.

This makes sense because as η gets large, the switching gets faster and faster as
we discussed above, and therefore the neurotransmitter cannot easily escape from
a small region about either endpoint. Also,

lim
η→0
M(µ, η, L) = ∞.

This makes sense because, as we saw above, as the switching gets slower and slower,
input dominates over removal. Finally,

lim
L→∞

M(µ, η, L) = c
µ

η
.

In the simple case where there is a terminal at one end and a no flux condition at
the other end, this is the limit that we saw in Section 4.1 above. The limit exists
because as L gets very large the coth term goes to one andM becomes independent
of L. The same thing happens here if the terminals at the ends are sufficiently far
apart.

4.3. Real neural parameters. Many dopaminergic and serotonergic neurons fire
at a basal rate of about 1 spike/sec [10, 12]. The length of a typical action potential
is about 1-10 milliseconds [13] and so it’s reasonable to assume that the release of
neurotransmitter lasts a total of about 5 milliseconds. This means that reasonable
values are rq = 1/sec, rf = 200/sec, and µ =

rq
rf

= 1
200 . The diffusion constant for

dopamine is approximately 10−6(cm)2/sec [22], so

η =

√
rq + rf
D

≈
√

2 104/cm =
√

2 /µm.

The spacing between neural terminals varies widely, but for serotonin it has been
estimated that there are about (2.6)106 terminals per cubic millimeter [21] or a
distance of about 7µm between terminals. In [18], Figure 1, some terminals are
considerably further apart than 20 µm and some are less. If we assume that 7µm
≤ L ≤ 20µm, then

9.9 ≤ ηL = (

√
2

µm
)(Lµm) ≤ 28.

Thus coth (ηL) ≈ 1 and we are well within the range of L where M is approx-
imately independent of L. Typical extracellular concentrations of dopamine are
approximately .090µM [1] and from this one can use the formula (51) to compute
c, the one parameter for which there are no experimental measurements.

4.4. Complete solution of the one-dimensional problem. In Section 3 we
outlined a method to give an explicit formula for the constant mean,M, in the case
where there are neurons at both 0 and L and they fire independently with different
parameters. This allows us to compute the overall spatial mean in the very general
situation where there is a piece of neural tissue represented by the interval [a, b] that
contains many neurons, switching between firing and quiescence, and glial cells that
absorb neurotransmitter, see Figure 2.

We assume that there are finitely many neural terminals and finitely many glial
cells in the interval [a, b]. Since we are in one-dimension, each neuron or glial cell
separates the tissue on its left from the tissue on its right. Put differently, the tissue
is divided into subintervals with terminals or glial cells only at the ends. If there
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Figure 2. A line of neural tissue with glial cells and neural terminals.

are glial cells at each end, then the neurotransmitter mean in that interval will be
0 as t → ∞. If there is a glial cell at one end and a neuron at the other end, then
the mean is linear over the interval (formula (46) above) and the spatial mean over
the interval is elementary to compute. If there are terminals at both ends, then the
spatial distribution of the asymptotic mean in the interval is given by the complex
general formula (that we did not state explicitly) in Section 3. Finally, at the ends
of the tissue if a glial cell is nearest the end, then the mean neurotransmitter level
is 0 in that interval, and if a terminal is nearest the end, then the mean is constant
over the interval and given by the formula (51) above. Thus, once we know the
parameters for each neural terminal, we can compute the neurotransmitter mean in
each subinterval, and therefore, by elementary methods can compute explicitly the
overall mean over the whole tissue as t→∞.

5. Discussion. The goal of this paper was to begin the development of mathe-
matical methods for understanding volume transmission in which cells in one nu-
cleus project their axons to a distant nucleus and release neurotransmitter extra-
synaptically. Thus the terminals on the projections maintain (or change) the concen-
tration of the neurotransmitter in the extracellular space in the projection nucleus.
Given the properties of the neurons, one would like to compute various quanti-
ties like average neurotransmitter concentration. The problem is interesting from
a mathematical point of view because the neuron terminals are both the source of
neurotransmitter and the most important sink. We formulated the question as a
problem of switching boundary conditions for the heat equation where each terminal
is a point at which neurotransmitter is released at a constant rate when the neuron
is firing and becomes an absorbing boundary condition when it is not. This formu-
lation ignores some details of the biology. Surely the release rate is not constant
throughout the short action potential, and some neurotransmitter may continue to
be released for some milliseconds after the action potential is finished. The reuptake
of neurotransmitter into the terminal is by transporters obeying Michaelis-Menten
kinetics and therefore treating reabsorption as an absorbing boundary condition is
an approximation. And, we have only considered the question in one space dimen-
sion.

Nevertheless, we have found some interesting and unexpected phenomena that
could be important for biological understanding if they also hold in two and three
dimensions. Chief among these is the fact that in the simplest problem, a switching
neuron at x = L and a no flux boundary condition at x = 0, limt→∞ Eu(x, t) is a
constant, M, independent of x and the variance decays rapidly as one moves away
from the terminal. Thus the whole tissue, [0, L], sees the same average concentration
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of neurotransmitter even though some parts are closer to the terminal and some
parts are further away. And, we were able to calculate a simple explicit formula for
M in terms of the parameters of the problem. In Section 3 we developed a method to
solve the problem when there are independently switching neuron terminals at both
ends of the interval. There we prove that M is constant in space if the terminals
have the same parameters and is linear in x if the parameters are different.

The other simple problem that we considered was to have a switching terminal
at x = L and an absorbing glial cell at x = 0. There are 10 times as many glial
cells in the brain as there are neurons [10]. Some of them are known to take
up neurotransmitter [8, 9], though probably not as quickly or efficiently as neural
terminals. In this case M(x) = lim→∞ Eu(x, t) is a linear function of x and we
compute its slope explicitly in terms of the neural parameters. Recent work with a
biological collaborator [24] suggests that this uptake mechanism plays an important
role for serotonin.

We have begun some calculations in higher dimensions where the analytical and
geometrical issues are much more difficult. The problem can be formulated similarly
to what have done here, but closed formulas for M seem much harder to obtain,
thoughM can be computed numerically. Numerical calculations show some similar
properties to the one dimensional results in this paper. However, the terminals
can no longer be treated as points and thus their shape matters, and it is not yet
clear how the excluded volume, the tortuosity of the extracellular space, and the
placement of geometric obstacles affects the spatial variation of limt→∞ Eu(x, t).
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