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ESCAPE FROM SUBCELLULAR DOMAINS WITH RANDOMLY
SWITCHING BOUNDARIES∗

PAUL C. BRESSLOFF† AND SEAN D. LAWLEY†

Abstract. Motivated by various cellular transport processes, we consider diffusion in a potential
and analyze the escape time to boundaries that randomly switch between absorbing and reflecting
states. Combining disparate tools from PDEs and probability theory, we study both (a) the escape
to the boundary in which the entire boundary switches and (b) the escape to one of N small pieces
of the boundary that each randomly switch. For (a), we show how the switching boundary affects
the classical rate of escape from a potential well. For (b), we significantly generalize a known result
for the gated narrow escape problem and give this result an intuitive probabilistic interpretation.
In both cases, our results illustrate the complementary perspectives that PDE and probabilistic
methods offer escape problems.
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1. Introduction. One of the fundamental transport processes in biological cells
is the exchange of ions, proteins, and other macromolecules between subcellular do-
mains, or between the interior and exterior of the cell, via membrane pores and
channels [4]. For example, the nucleus of eukaryotes is surrounded by a protective
nuclear envelope (NE) within which are embedded nuclear pore complexes (NPCs);
see Figure 1(a). The NPCs are the sole mediators of exchange between the nucleus
and cytoplasm. In general, small molecules of diameter ∼ 5nm can diffuse through
the NPCs unhindered, whereas larger molecules up to around 40nm in diameter are
excluded unless they are bound to a family of soluble protein receptors known as
karyopherins (kaps) [21]. Another classical example is the membrane transport of
charged particles via voltage-gated or ligand-gated ion channels; see Figure 1(b). In
this case, each gate randomly switches between an open and closed state. From a
modeling perspective, there are three important characteristics of channel-mediated
membrane transport. First, the membrane effectively acts as a mixed or semiper-
meable boundary, which is absorbing (open) wherever a channel is located, but is
reflecting (closed) in the remainder of the boundary. Second, each channel is typi-
cally much smaller than the total membrane surface area, so that one often treats the
transport process as a narrow escape problem [10, 17, 2, 15, 7, 11]. Finally, the open
regions of the boundary do not stay open permanently, but randomly switch between
open and closed states, either due to intrinsic properties of the channels or due to
changes in the conformational state of the diffusing molecules.

In this paper we consider the problem of diffusive transport in a bounded domain,
whereby all or parts of the boundary randomly switch between open and closed states.
More specifically, let Ω ∈ R

d denote a bounded, open set with smooth boundary ∂Ω.
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(a) (b)

Fig. 1. (a) Diagram of a cell nucleus surrounded by the nuclear envelope, which is studded with
nuclear pore complexes. (b) Voltage-gated ion channel. [Public domain figures downloaded from
Wikimedia Commons.]

Let Φ : Ω̄ → R
d be continuously differentiable and suppose X(t) ∈ Ω satisfies

dX(t) = −∇Φ(X(t)) dt +
√

2DdW(t),(1.1)

where each component of W(t) ∈ R
d is an independent Wiener process such that

〈dWi(t)〉 = 0, 〈dWi(t)dWj(t
′)〉 = δi,jδ(t− t′)dt dt′, i = 1, . . . , d,

and D is a scalar diffusion coefficient. Equation (1.1) represents a Brownian particle
moving in an external potential Φ. We will focus on two particular types of escape
problem.

(SI) Uniformly switching boundary. The whole boundary randomly switches
between absorbing and reflecting. In order to keep track of the boundary state, we
introduce the discrete random variable n(t) ∈ {0, 1} such that n(t) = 0 if ∂Ω is
absorbing and n(t) = 1 if ∂Ω is reflecting. We assume that transitions between the
two states are given by the two-state Markov process

(1.2) 0
β
�
α

1,

with fixed transition rates α, β. One possible biological interpretation of the switch-
ing boundary is that the Brownian particle randomly switches between two confor-
mational states labeled by n(t) such that it can only pass through the membrane
when n(t) = 0. This is motivated by the example of the nuclear envelope, under
the assumption that the nuclear pores are sufficiently dense that one can homogenize
the membrane [8, 13]. (It is also possible that the effective potential Φ(x) and the
diffusivity D also switch between the two states, but we will ignore this possibility
here.)

(SII) Randomly switching narrow gates. We consider N narrow open gates
∂Ωε

k, k ∈ {1, . . . , N}, with the kth gate given by the ε > 0 neighborhood of xk ∈ ∂Ω
defined according to

∂Ωε
k := {x ∈ ∂Ω : |x− xk| < ε}.(1.3)

It is assumed that |xk −xl| = O(1) for all k 	= l, that is, the gates are well separated;
see Figure 2. We then partition the boundary ∂Ω by setting

∂Ωa = ∪N
k=1∂Ωε

k, ∂Ωr = ∂Ω − ∂Ωa.
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Fig. 2. Narrow escape problem for a Brownian particle moving in a domain Ω with a finite
number of small open gates on the boundary. The kth gate is of size ε and is centered about a point
xk ∈ ∂Ω. Inset: a local coordinate system around the jth arc.

Let n(t) ∈ {0, 1}N be an irreducible Markov process whose kth component, nk(t) ∈
{0, 1}, controls the state of the kth gate. We say that gate k is open or closed at time
t if nk(t) is 0 or 1, respectively. We assume n(t) is independent of X(t), but we do
not necessarily assume that the components of n(t) are independent of each other.
That is, the different gates may be correlated.

The case (SI) is the higher-dimensional analog of the one-dimensional (1D) prob-
lem of escape from a bounded interval with a switching boundary at one end (or
simultaneously switching boundaries at both ends). We recently analyzed this prob-
lem using a combination of PDE methods, e.g., Green’s functions, and probabilistic
methods based on stopping times [5]. In particular, we determined corrections to the
classical 1D escape problem with static boundaries. These corrections involve the
statistics of a particle that starts at the switching boundary when the latter is in the
reflecting state. The Green’s function approach provided explicit expressions for these
corrections under a restricted class of potentials, whereas the probabilistic approach
allowed us to prove asymptotic formulae for a much more general class of potentials
in the small diffusion limit. In particular, we showed that corrections to the mean
first passage time (MFPT) depend critically on the gradient of the potential near the
switching boundary. The main aim of the current paper is to extend the complemen-
tary Green’s function and probabilistic approaches to the higher-dimensional escape
problems (SI) and (SII). As far as we are aware, the only previous analysis of switch-
ing boundaries has been within the context of either a single narrow gate [16] or a set
of narrow gates in which only a single gate can be open at any one time [1]; neither
consider the effects of a potential nor combine PDE and probabilistic methods.

The structure of the paper is as follows. We first analyze the escape problem for a
uniformly switching boundary using Green’s functions, illustrating our analysis using
a radially symmetric domain and potential (section 2). We then turn to the narrow
escape problem for multiple, randomly switching gates in section 3. In particular, we
extend the approach of Ward and collaborators for fixed gates [15, 7], which uses a
combination of Green’s functions and matched asymptotics in the limit ε → 0, where
ε characterizes the size of each gate. For the sake of illustration, we focus on a two-
dimensional (2D) domain with zero potential. Finally, in section 4 we turn to the
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probabilistic approach, and derive asymptotic formulae for the effects of a switching
boundary and a nonzero potential on (i) a uniformly switching boundary in the weak
diffusion limit and (ii) randomly switching gates in the narrow gate limit ε → 0.

2. MFPT for a randomly uniformly switching boundary (SI). Let us
first consider the case where the whole boundary switches between open and closed,
necessitating that we have to keep track of both the continuous stochastic variable
X(t) evolving according to (1.1) and the binary discrete variable n(t) that determines
the current boundary condition. We thus have a stochastic hybrid system [4, 5]. If we
set pn(x, t|y, 0) = E[p(x, t|y, 0)1n(t)=n], then pn evolves according to the differential
Chapman–Kolmogorov (CK) equation

(2.1)
∂pn
∂t

= ∇ · (pn(x, t|y, 0)∇Φ(x)) + D∇2pn(x, t|y, 0) +
∑

m=0,1

Anmpm(x, t|y, 0),

with A the matrix

(2.2) A =

(
−β α
β −α

)
.

Equation (2.1) is supplemented by the boundary conditions

(2.3) p0(x, t|y, 0) = 0, J1(x, t|y, 0) = 0, x ∈ ∂Ω,

with

(2.4) Jn(x, t|y, 0) = −pn(x, t|y, 0)∇Φ(x) −D∇pn(x, t|y, 0)

and the initial condition

pn(x, t|y, 0) = δ(x− y)ρn,

where ρn is the stationary measure of the ergodic two-state Markov process generated
by the matrix A,

(2.5)
∑

m=0,1

Anmρm = 0, ρ0 =
α

α + β
, ρ1 =

β

α + β
.

Let Tm(y) denote the MFPT to reach any point on the boundary ∂Ω, given that
the particle started in state (y,m) at t = 0. The distribution of first passage times for
fixed m is related to the survival probability that the system is still in the domain Ω,

(2.6) Pm(y, t) ≡
∫
Ω

∑
n=0,1

pn(x, t|y, 0)dx.

That is, the first passage time density for fixed (y,m) is

(2.7) fm(y, t) = −dPm

dt
= −

∫
Ω

∑
n

∂pn(x, t|y, 0)

∂t
dx.

Substituting for ∂pn/∂t using the CK equation (2.1), applying the divergence theorem
and the identity

∑
n Anm = 0 yields

fm(y, t) = −
∫
∂Ω

Jm(x, t|y, 0) · dσ.
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Given this density, the MFPT Tm(y) is determined by

Tm(y) ≡
∫ ∞

0

fm(y, t)tdt = −
∫ ∞

0

t
∂Pm(y, t)

∂t
dt =

∫ ∞

0

Pm(y, t)dt.

In order to derive a differential equation for the MFPT, consider the backward CK
equation for qm(x, t|y, 0) = E[p(x, t|y, 0)1n(0)=m] with x fixed:

(2.8) ∂tqm(x, t|y, 0) = �LFPqm(x, t|y, 0) +
∑
n=0,1

A�
mnqn(x, t|y, 0),

with linear operator

(2.9) �LFP = −∇Φ(y) · ∇ + D∇2

and boundary conditions

(2.10) q0(x, t|y, 0) = 0, ∇q1(x, t|y, 0) · σ(y) = 0, y ∈ ∂Ω.

Note that �LFP is non-Hermitian with respect to the inner product

〈f, v〉 =

∫
Ω

f(x)g(x)dx,

with f and g satisfying the same Neumann or Dirichlet boundary conditions on ∂Ω.
Integrating (2.8) with respect to x ∈ Ω shows that Pm(y, t), and hence fm(y, t), also
satisfies a backward CK equation. It follows that

(2.11) �LFPTm(y) +
∑
n=0,1

A�
mnTn(y) = −1,

with boundary conditions

T0(y) = 0, ∇T1(y) · σ(y) = 0, y ∈ ∂Ω.

Performing the change of variables

wn(y) = ρnTn(y),

(2.11) becomes the pair of equations

�LFPw0(y) − βw0(y) + αw1(y) = −ρ0,(2.12a)

�LFPw1(y) + βw0(y) − αw1(y) = −ρ1,(2.12b)

with wm(y) satisfying the same boundary conditions as Tm(y). Adding (2.12a),
(2.12b), and setting w(y) = w0(y) + w1(y) gives

(2.13) �LFPw(y) = −1, y ∈ Ω, w(y) = w1(y), y ∈ ∂Ω.

It follows that

(2.14) w(y) = τ(y) + φ(y),

where τ(y) is the MFPT for a nonswitching boundary and φ(y) satisfies the equation

(2.15) �LFPφ(y) = 0, φ(y) = w1(y), y ∈ ∂Ω.
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We can solve (2.15) using Green’s functions. That is, let G0(x,y) satisfy the adjoint
equation

(2.16) �L†
FP,yG0(x,y) = −δ(x− y),

with

G0(x,y) = 0, x ∈ ∂Ω.

Then

(2.17) φ(y) =

∫
∂Ω

w1(y′) [∇yG0(y,y′) · σ(y′)] dy′.

We thus have

(2.18) w(y) = τ(y) +

∫
∂Ω

w1(y′)Q(y′|y)dy′,

with

(2.19) Q(y′|y) = ∇yG0(y,y′) · σ(y′).

Equation (2.18) has a direct probabilistic interpretation: τ(y) is the time expected
to reach the switching boundary for the first time starting from y, but there is now
the possibility that the boundary is closed on arrival. Thus, there is an additional
contribution whereby Q(y′|y) is the conditional probability density that the particle
will first hit the boundary at y′ ∈ ∂Ω and w1(y′) is the MFPT that the particle starts
at position y′ ∈ ∂Ω when the boundary is closed.

Now substituting (2.18) into (2.12b) and using w0 = w − w1, we obtain the
following inhomogeneous equation for w1:

(2.20) �LFPw1(y) − (α + β)w1(y) = −βw(y) − ρ1.

Introduce the modified Helmholtz Green’s function G(x,y) with

(2.21)
[
�L†
FP,y − (α + β)

]
G(x,y) = −δ(x− y)

and

∇Φ(y)G(x,y) + D∇yG(x,y) · σ(y) = 0, x ∈ ∂Ω.

Then

(2.22) w1(y) =

∫
Ω

G(y,y′)[βw(y′) + ρ1]dy′.

Finally, since w(y) = τ(y) + φ(y), and taking y ∈ ∂Ω, we obtain the self-consistency
condition

(2.23) w1(y) =

∫
Ω

G(y,y′)[βτ(y′) + ρ1]dy′ +

∫
∂Ω

H(y,y′)w1(y′)dy′, y ∈ ∂Ω,

with

(2.24) H(y,y′) =

∫
Ω

G(y,y′′)Q(y′|y′′)dy′′.
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2.1. Example: Radially symmetric potential. In the special case of a radi-
ally symmetric potential, Φ(x) = Φ(r), and Ω = Sd for d ≥ 2, our analysis reduces
to an effective 1D problem, which is an extension of our previous work on the escape
from a finite interval with a switching boundary at one of the ends [5, 12]. The basic
observation is that the MFPT will only depend on the radial distance r of the starting
position from the origin. The radially symmetric form of the differential operator �LFP

is

(2.25) �Lr = −Φ′(r)
d

dr
+ D

[
d− 1

r

d

dr
+

d2

dr2

]
, 0 < r < R,

with R the radius of the hypersphere. In the case of a fixed boundary, we have the
MFPT τ(r) satisfying the equation

(2.26) −Φ̂′(r)
dτ

dr
+ D

d2τ

dr2
= −1, 0 < r < R, τ(R) = 0,

where

(2.27) Φ̂(r) = Φ(r) −D(d− 1) ln(r).

This is equivalent to the FPT problem of a 1D particle moving in an effective potential
Φ̂(r) on the interval [0, R], with a reflecting boundary at r = 0 and an absorbing
boundary at r = R. (It is not necessary to impose a reflecting boundary condition at
r = 0, since the effective potential has a logarithmic term that blows up at r = 0.)
From a physical perspective, we see that the logarithmic term reduces the slope of the
potential at the boundary, Φ̂′(R) < Φ′(R), which means that there is an additional
effective force that tends to push the particle towards the boundary, thus reducing
the MFPT.

In the case of a zero potential, Φ(r) = 0, the classical MFPT τ(r) satisfies τ ′(r) =
u(r), with

d

dr
(urd−1) = −rd−1

D
.

It follows that

u(r) =
A

rd−1
− r

(d− 1)D
.

In the case Φ(r) = 0, the MFPT τ(r) satisfying τ(R) = 0 is

(2.28) τ(r) =
R2 − r2

2(d− 1)D
.

For an r-dependent potential, (2.26) has the classical solution [9]

(2.29) τ(r) =
1

D

∫ R

r

∫ z

0

e[
̂Φ(z)−̂Φ(r′)]/Ddr′ dz.

Suppose that the effective potential Φ̂ is twice differentiable with a unique min-
imum at rmin ∈ (0, R). If the particle starts in a neighborhood of rmin, then we can
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Fig. 3. Radially symmetric effective potential well ̂Φ(r) with (a) ̂Φ′(r) > 0 and (b) ̂Φ′(r) < 0
on [R− δ, R].

use Laplace’s method for small D to give

τ(r) =
1

D

∫ R

rmin

∫ z

0

e[
̂Φ(z)−̂Φ(r)]/Ddr dz

∼ 1

D

[∫ R

0

e−̂Φ(r)/Ddr

] [∫ R

rmin

e
̂Φ(z)/Ddz

]

∼
√

2π

Φ̂′′(rmin)
e−̂Φ(rmin)/D

[∫ R

rmin

e
̂Φ(z)/Ddz

]
as D → 0.

Evaluation of the final integral depends on whether or not Φ̂(r) has a local maximum

in the domain [rmin, R] such that Φ̂max > Φ̂(R); see Figure 3. If this is the case, then
we can apply Laplace’s method to obtain the classical Kramers’ formula

(2.30) τ(r) = 2π

√
1

Φ̂′′(rmin)|Φ̂′′(rmax)|
e[

̂Φ(rmax)−̂Φ(rmin)]/D.

In the case of a switching boundary, we find that (2.14) becomes w(r) = τ(r) +
w1(R) and (2.20) reduces to the 1D form

(2.31) −Φ̂′(r)
dw1

dr
+D

d2w1

dr2
−(α+β)w1 = −βw(r)−ρ1, 0 < r < R, ∂w1(R) = 0.

This has the solution

w1(z) =

∫ R

0

G(z, r)[βw(r) + ρ1]dr,

where G is the 1D Green’s function defined according to

1

rd−1

d

dr
(rd−1G(z, r)Φ′(r))+D

[
d− 1

r

d

dr
+

d2

dr2

]
G(z, r)− (α+β)G(z, r) = −δ(z−r),

with Φ′(r)G(z, r) + D∂rG(z, r) = 0 at r = R. Finally, since w(r) = τ(r) + w1(R), we
obtain the self-consistency condition

w1(R) = [ρ1 + βw1(R)]

∫ R

0

G(R, r)dr + β

∫ R

0

G(R, r)τ(r)dr,
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that is,

(2.32) w1(R) =
ρ1ΛR + βΓR

1 − βΛR
,

with

(2.33) ΛR =

∫ R

0

G(R, r)dr, ΓR =

∫ R

0

G(R, r)τ(r)dr.

In the case of an r-dependent potential well Φ(r), one typically has to carry out out
an eigenfunction expansion of the associated Green’s function G(z, r). However, as we
previously showed in the 1D case [5], there is only a restricted class of potentials for
which the eigenfunctions can be calculated exactly. In principle, we could also carry
out eigenfunction expansions of the multidimensional Green’s functions G0(x,y) and
G(x,y) for a nonradially symmetric potential Φ(x). However, the resulting calcula-
tions rapidly become unwieldy. Therefore, in section 4.1, we will consider an alter-
native, probabilistic approach based on stopping times, which is valid in the small
diffusion limit. In particular, we will show that the effect of a switching boundary on
the rate of escape from a potential well depends on the sign of the gradient of the
potential in a neighborhood of the boundary.

3. MFPT for randomly switching narrow gates (SII). Suppose that the
boundary ∂Ω is now closed except for a set of small open gates of size εlk located
at a set of boundary points xj ∈ ∂Ω. This narrow escape problem has been studied
extensively by a number of groups [10, 17, 2, 15, 7, 11]. All of these studies assume that
the gate is always open and that the potential is flat. The example of escape through
a narrow open gate in the presence of a potential has been studied by Singer and
Schuss [18], whereas the narrow escape problem for a stochastically gated Brownian
particle in the absence of a potential has been studied by Riengruber and Holcman
[16]. In the latter case, the gate is fixed but the particle is assumed to switch between
two conformational states with different diffusivities and such that the particle can
only pass through the gate in one of the states. This is equivalent to a single particle
trying to escape through a stochastically switching gate when the diffusivity of the two
conformational states is the same. However, it is important to emphasize that when
there are multiple particles, the two scenarios are not equivalent, since in the case
of switching gates there are additional correlations due to the fact that all particles
experience the same switching environment [6]. In this section, we will show how
to modify the Green’s function analysis of section 2 in order to handle the case of
multiple switching gates. For the sake of illustration, we will develop the analysis
for a two-dimensional (2D) domain in the absence of a potential, and use matched
asymptotics along the lines of Ward et al. [15] and Cheviakov, Ward, and Straube [7]
to determine the effects of switching on the MFPT in the narrow gate limit ε → 0. The
effects of a potential in this limit will be investigated in section 4 using an alternative
probabilistic approach.

3.1. Narrow escape problem for a 2D domain with switching gates on
the boundary and a zero potential. In order to develop the basic theory, we
will take d = 2 and Ω to be the unit disc. As a further simplification, let us focus
on the case of a zero potential, Φ = 0, and assume that the gates open and close
independently, with the kth gate having the transition rates αk, βk; see (1.2). Since
there are N switching gates, we now have to introduce N discrete variables nk(t),
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k = 1, . . . , N , with nk(t) = 0 if the kth gate is open and nk(t) = 1 if it is closed.
Defining pn(x, t|y, 0) = E[p(x, t|y, 0)1n(t)=n] with n = (n1, . . . , nN ), the CK equation
(2.1) becomes

(3.1)
∂pn
∂t

= D∇2pn(x, t|y, 0) +
∑
m

Anmpm(x, t|y, 0),

with A the 2N × 2N matrix with elements

(3.2) Anm =

N∑
k=1

A(k)
nkmk

∏
l �=k

δnl,ml

and A(k) given by (2.2) for α, β → αk, βk. The boundary conditions are

pn(x, t|y, 0) = 0, x ∈
N∑

k=1

(1 − nk)∂Ωε
k,(3.3a)

∇pn(x, t|y, 0) =0 x ∈ ∂Ω −
N∑

k=1

(1 − nk)∂Ωε
k.(3.3b)

Proceeding along similar lines as in section 2, we find that the MFPT Tm(y) for
the particle exiting one of the gates when it is open, starting at position y and with
n(0) = m, satisfies the corresponding backwards CK equation

(3.4) D∇2Tm(y) +
∑
n

A�
mnTn(y) = −1,

with the boundary conditions

Tm(y) = 0, y ∈
N∑

k=1

(1 −mk)∂Ωε
k,(3.5a)

∇Tm(y) · σ(y) = 0, y ∈ ∂Ω −
N∑

k=1

(1 −mk)∂Ωε
k.(3.5b)

The matrix A satisfies detailed balance, that is,

AnmPm = AmnPn,

where P is the unique stationary distribution of the discrete Markov process:

(3.6) Pn =

N∏
k=1

ρ(k)nk
, ρ

(k)
0 =

αk

αk + βk
, ρ

(k)
1 =

βk

αk + βk
.

Hence, setting wn(y) = PnTn(y), we find that

(3.7) D∇2wm(y) +
∑
n

Amnwn(y) = −Pm,

with wn satisfying the same boundary conditions as Tm. Setting w(y) =
∑

nwn(y),
we finally obtain the analog of (2.13):

(3.8) D∇2w(y) = −1,
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W
 =

 Θ
ΔW = 0

z

s

∂ z
W

 =
 0

∂ z
W

 =
 0

a b
∂nw = 0

Δw = −D-1

Fig. 4. Construction of the matched asymptotic solution for the narrow escape problem for a
disc with a single gate. (a) Inner solution W in the half-plane s ∈ R, z ∈ R

+ with mixed boundary
conditions on z = 0. (b) Outer solution w in the disc with a reflecting boundary condition and the
gate treated as a point.

with boundary conditions

w(y) = Θk, y ∈ ∂Ωε
k, ∇w(y) · σ(y) = 0, y ∈ ∂Ω −

N∑
k=1

∂Ωε
k.(3.9)

Here Θk denotes the MFPT to escape through any of the gates, given that the particle
started at the kth gate with the latter closed. If Θk ≡ 0 for all k, then we would have
the classical narrow escape problem through a set of N narrow open gates. Here we
show how to modify the analysis when Θk 	= 0, following the particular approach of
Ward and collaborators [15, 7]. For a complementary Green’s function approach, see
the work of Holcman and Schuss reviewed in [11].

3.2. Calculation of w(y) using matched asymptotics. The basic idea is to
construct the asymptotic solution for w(y) in the limit ε → 0 using the method of
matched asymptotic expansions. That is, an inner or local solution valid in a O(ε)
neighborhood of each gate is constructed and then these are matched to an outer
or global solution that is valid away from these neighborhoods; see Figure 4. In the
case of a disc, each gate is represented by an arc of length εlj with lj = O(1). In
order to construct the inner solution, (3.8) is rewritten in terms of a local orthogonal
coordinate system (z, s), in which s denotes the arc length along ∂Ω and z is the
minimal distance from ∂Ω to an interior point y ∈ Ω, as shown in the inset of Figure
2. Now we introduce stretched coordinates ẑ = z/ε and ŝ = (s− sk)/ε, and write the
solution to the inner problem as W (y) = w(ẑ, ŝ). Neglecting terms of O(ε), it can be
shown that W satisfies the homogeneous equation [15]

(3.10)
∂2W

∂2ẑ
+

∂2W

∂2ŝ
= 0, 0 < ẑ < ∞, −∞ < ŝ < ∞,

with the following boundary conditions on ẑ = 0:

(3.11)
∂W

∂ẑ
= 0 for |ŝ| > lk/2, W = θk for |ŝ| < lk/2.

The resulting boundary value problem can be solved by introducing elliptic cylinder
coordinates. However, in order to match the outer solution we need only specify the
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far-field behavior of the inner solution, which takes the form

(3.12) W (y) ∼ Θk + Bk [log (|y − xk|/ε) − log(lk/4) + o(1)] as |y − xk|/ε → ∞,

where the Bk are unknown constants, which are determined by matching with the
outer solution.

As far as the outer solution is concerned, each absorbing arc shrinks to a point
xk ∈ ∂Ω as ε → 0; see Figure 4(b). Each point xj effectively acts as a point source
that generates a logarithmic singularity resulting from the asymptotic matching of the
outer solution to the far–field behavior of the inner solution. Thus the outer solution
satisfies

(3.13) ∇2w(y) = − 1

D
, y ∈ Ω,

with reflecting boundary condition

(3.14) ∇w(y) · σ(y) = 0 for y ∈ ∂Ω\{x1, . . . ,xN}

and

(3.15) w(y) ∼ Θk +
Bk

νk
+ Bk log |y − xk| as y → xk, k = 1, . . . , N,

where

(3.16) νk ≡ − 1

log(εlk/4)
.

This can be solved in terms of the Neumann Green’s function G, defined as the unique
solution of

∇2G(x,x′) =
1

|Ω| − δ(x− x′), x ∈ Ω,(3.17a)

G(x,xk) ∼ − 1

π
log |x− xk| + R(xk,xk) as x → xk ∈ ∂Ω,(3.17b)

∂nG(x,x′) = 0, x ∈ ∂Ω,

∫
Ω

G(x,xk)dx = 0,(3.17c)

where R(x,x′) is the regular part of G(x,x′). It follows that the outer solution can
be expressed as

(3.18) w(y) = −π

N∑
k=1

BkG(y,xk) + χ,

where χ is an unknown constant. Integrating both sides of (3.18) shows that

(3.19) χ = w ≡ 1

|Ω|

∫
Ω

w(y)dy.

The problem has now reduced to solving N+1 linear equations for N+1 unknowns
Bk, χ. The first N equations are obtained by matching the near-field behavior of the
outer solution as x → xk, with the far–field behavior of the corresponding inner
solution (3.12). After cancellation of the logarithmic terms, we have

−πBkRk − π
∑
j �=k

BjGkj + χ− Θk =
Bk

νk
,(3.20)
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for j = 1, . . . , N , where Gkj ≡ G(xk,xj) and Rk ≡ R(xk,xk). The remaining equa-

tion is obtained by noting that ∇2w(y) = −π
∑N

k=1 Bk∇2G(y,xk) and, hence,

(3.21) π|Ω|−1
N∑
j=1

Bj =
1

D
.

The regular part of the Neumann Green’s function R(x,xj) will depend on the ge-
ometry of the domain Ω. For example, in the case of a unit disk when the source xk

is on the unit circle, G has the well-known formula

G(x,xk) = − 1

π
log |x− xk| +

|x|2
4π

− 1

8π
.

For a single gate of arc length 2ε (l1 = 2), (3.20) and (3.21) are easily solved to
give B1 = |Ω|/πD and

χ = Θ1 + (πR1 + 1/ν1)B1,

so that

w(y) ∼ Θ1 +
|Ω|
D

[
− 1

π
log(ε/2) + R(x1,x1) −G(y,x1)

]
.(3.22)

It is straightforward to interpret the solution (3.22), namely, w(y) = τ(y)+Θ1, where
τ(y) is the solution to the classical narrow escape problem when the gate is always
open, that is, it determines the MFPT to reach the gate, and the correction term Θ1

is the MFPT to eventually escape through the gate given that the particle starts at
y = x1 and the gate is closed.

For multiple gates, (3.20) and (3.21) can be solved by Taylor expanding in powers
of νj [15]. This gives

Bk ∼ νk
Nν̄

⎡⎣ |Ω|
Dπ

+
N∑
j=1

νj(Θj − Θk)

⎤⎦ + O(|ν|),

(3.23a)

χ ∼ 1

Nν̄

⎡⎣1 +
π

Nν̄

N∑
i=1

N∑
j=1

νiνjĜij

⎤⎦⎡⎣ |Ω|
Dπ

+
N∑
j=1

νjΘj − π
N∑
i=1

N∑
j=1

νiνjĜijΘj

⎤⎦
+ O(|ν|),(3.23b)

where Ĝij = Gij for all i 	= j and Ĝii = Ri, and ν̄ = N−1
∑N

j=1 νj . We have also

used the fact that Θk = O(|ν|−1).
Substituting (3.23) into (3.18) shows that we can decompose the MFPT as w(y) =

τ(y) + Ψ(y), where

Ψ(y) ∼ −π
N∑

k=1

νk
Nν̄

⎡⎣ N∑
j=1

νj(Θj − Θk)

⎤⎦G(y,xk) +
1

Nν̄

N∑
j=1

νjΘj + O(|ν|).(3.24)

We can decompose Ψ(y) as

(3.25) Ψ(y) =
N∑

k=1

πk(y)Θk,
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where πk(y) is the probability that the particle first hits the kth gate starting at po-
sition y, and assuming that the initial state of the gates is n(0) = m with probability
Pm. Comparison with (3.24) implies that

(3.26) πk(y) ∼ νk
Nν̄

⎡⎣1 − π
∑
j

[G(y,xj) −G(y,xk)]νj

⎤⎦ + O(|ν|2).

3.3. Self-consistency condition for Θk. Having solved w(y) in terms of Θk,
k = 1, . . . , N , we now need to derive self-consistency conditions for the Θk. Again, let
us first consider a single gate with α1 = α and β1 = β. Equation (3.7) implies that
w1(y) satisfies

(3.27) D∇2w1(y) − (α + β)w1(y) = −βw(y) − ρ1,

with boundary condition ∇w1(y) · σ = 0 for all y ∈ ∂Ω. The solution of equation
(3.27) can be solved in terms of the Green’s function G(x,y) of the modified Helmholtz
equation:

∇2
yG(x,y) − (α + β)G(x,y) = −δ(x− y), y ∈ Ω.(3.28a)

G(x,xk) ∼ − 1

π
log |x− xk| + R(xk,xk) as x → xk ∈ ∂Ω,(3.28b)

∇G(x,y) · σ(y) = 0, y ∈ ∂Ω,(3.28c)

where R(x,y) is the regular part of G(x,x′), and the Neumann boundary conditions
imply that ∫

Ω

G(x,y)dy = (α + β)−1.

Using Green’s theorem, we find that

(3.29) w1(y) =

∫
Ω

G(y,x)[βw(x) + ρ1]dx.

Finally, setting y = x1, we obtain the self-consistency condition

(3.30) Θ1 =

∫
Ω

G(x1,x)[βw(x) + ρ1]dx.

Substituting for w(x), using the asymptotic expansion (3.22) gives

Θ1 =
1

α + β
(βΘ1 + ρ1) +

∫
Ω

G(x1,x)βτ(x)dx,

which shows that

(3.31) Θ1 =
β

α(α + β)
+

β

α
(α + β)

∫
Ω

G(x1,x)τ(x)dx.

Equations (3.22) and (3.31) yield the solution to the narrow escape problem for a
single switching gate. To leading order, we have

τ(y) ∼ τ̄ ≡ − |Ω|
πD

log(ε/2),



1434 PAUL C. BRESSLOFF AND SEAN D. LAWLEY

which is independent of the starting position y so that Θ1 ∼ (β/α)τ̄ and thus

(3.32) w(y) ∼ α + β

α
τ̄ .

This result was also derived in [16]. Note that one could calculate higher-order terms
in the asymptotic expansion of τ(y), and hence w(y), as a power series in ν = −1/ ln ε.
However, in this paper we are mainly interested in comparing the leading order re-
sults of matched asymptotics with those from the probabilistic approach presented in
section 4.

The above analysis can be extended to multiple gates. Defining

mk = (m1, . . . ,mk−1,mk+1, . . . ,mN ),

let

wm
mk

(y) = wm|mk=m , Amn
mknk

= Amn|mk=m,nk=n ,

and

θk(y) =
∑
mk

w1
mk

(y) =
∑
m

mkwm.

Fixing mk = 1 in (3.27) and summing over mk gives

D∇2θk(y) +
∑

mk,nk

[
A10

mknk
w0

nk
(y) + A11

mknk
w1

nk
(y)

]
= −

∑
m

Pmmk.

Now use the identities∑
mk

A1n
mknk

= −
∑
mk

A0n
mknk

, A10
mknk

= αkδmk,nk
, A01

mknk
= βkδmk,nk

,

to give

D∇2θk(y) + βk

∑
mk

w0
mk

(y) − αkθk(y) = −
∑
m

Pmmk = −ρ
(k)
1 .

Finally, using the identity∑
nk

w0
nk

(y) +
∑
nk

w1
nk

(y) = w(y)

gives

(3.33) D∇2θk(y) − (αk + βk)θk(y) = −βw(y) − ρ
(k)
1 .

Note that θk(y) satisfies the boundary conditions

(3.34) ∇θk(y) · σ = 0, y ∈ ∂Ω −
∑
j �=k

∂Ωε
j , θk(y) = Θj , y ∈ ∂Ωε

j .

Equation (3.33) can be solved along lines analogous to (3.8) using matched asymp-
totics and the modified Helmholtz Green’s function G(k) defined by (3.28), with
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α, β → αk, βk. After introducing stretched variables, one finds that the inner so-
lution is identical in form to (3.12),

(3.35) θk(y) ∼ Θj + Bkj [log (|y − xj |/ε) − log(lj/4) + o(1)] as |y − xj |/ε → ∞.

The outer solution now satisfies

(3.36) D∇2θk(y) − (αk + βk)θk(y) = −βkw(y) − ρ
(k)
1 , k = 1, . . . , N,

with reflecting boundary condition

(3.37) ∇θk(y) · σ(y) = 0 for y ∈ ∂Ω\{x1, . . . ,xN}

and

(3.38) θk(y) ∼ Θj +
Bkj

νj
+ Bkj log |y − xj | as y → xj , j = 1, . . . , N.

It follows that the outer solution can be expressed as

(3.39) θk(y) = −π
∑
j �=k

BkjG(k)(y,xj) +

∫
Ω

G(k)(y,x)[βkw(x) + ρ
(k)
1 ]dx.

For each k, the problem has reduced to solving N linear equations for N unknowns
Bkj , which are obtained by matching the near-field behavior of the outer solution as
x → xj , with the far–field behavior of the corresponding inner solution (3.12). After
cancellation of the logarithmic terms, we find that

(3.40)

∫
Ω

G(k)(xj ,x)[βw(x) + ρ1]dx− πBkjR(k)
j − π

∑
j′ �=k,j

Bkj′G(k)
jj′ − Θj =

Bkj

νj

for j 	= k, where G(k)
jl ≡ G(k)(xj ,xl) and R(k)

j ≡ R(k)(xj ,xj). Comparing equations
(3.39) and (3.40), we see that the first term on the right-hand side of (3.39) is O(ν)
smaller than the second term, where ν = −1/ ln(ε). Hence, to leading order,

(3.41) θk(y) ∼
∫
Ω

G(k)(y,x)[βkw(x) + ρ
(k)
1 ]dx.

Setting y = xk, we obtain the self-consistency condition

(3.42) Θk ∼
∫
Ω

G(k)(xk,x)[βkw(x) + ρ
(k)
1 ]dx,

with w(y) = τ(y) +
∑

k πk(y)Θk. As in the example of a single gate, we now exploit
the fact that the dominant (singular) terms of τ(y) and πk(y) are independent of y;
see also section 4. (The intuitive explanation for this is that as the size of each gate
shrinks to zero, the expected time to reach any gate starting from a point y ∈ Ω
is significantly longer than the time to reach some neighborhood of any other point
y′ ∈ Ω.) Then

Θk ∼ βk

αk + βk

(
τ̄ +

∑
l

π̄lΘl

)
,
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where π̄k ∼ νk/(Nν̄); see (3.26). Multiplying both sides by π̄k, summing over k, and
setting Ψ =

∑
l π̄lΘl then gives

Ψ ∼ (τ̄ + Ψ)
∑
k

π̄kρ
(k)
1 .

Hence, solving for Ψ finally yields the result

(3.43) w(y) ∼ τ̄

1 −
∑

k π̄kρ
(k)
1

.

Some remarks.
1. Although we have developed the analysis of switching gates by considering

a 2D domain, similar results can be obtained in higher dimensions by using
the appropriate singularity structure of the Green’s functions. For example,
in three dimensions the logarithmic fundamental solution −(1/2π) log |x| is
replaced by 1/(4π|x|). Additionally, if the gates are located on the boundary
of the domain, then there is a weak logarithmic term log |x−x0| that appears
after this fundamental singularity. Further terms again require determining
the regular part of the Green’s function.

2. The asymptotic result (3.43) for the leading order correction to the MFPT due
to switching gates holds in higher dimensions. It relies on the observation that
in the small gate limit ε → 0, the leading order contributions to the MFPT
and splitting probabilities are independent on the starting position y ∈ Ω.

3. In Figure 5, we compare (3.43) with Monte Carlo simulations. One could also
use a numerical PDE solver to examine the convergence of (3.43) as ε → 0.

4. One could now generalize the analysis to take into account a nonzero potential
Φ(x). In particular, suppose that Φ(x) has a unique minimum at x = x0.
This escape problem has been considered elsewhere for a single, nonswitching
gate in the weak diffusion limit [18]. There are then two small parameters in
the problem, the diffusivity D and gate size ε, such that in an appropriate
asymptotic limit, one can obtain a generalization of Kramers escape rate
formula. In section 4, we use a probabilistic approach to show that the
asymptotic formula (3.43) for switching gates still holds in the presence of
a potential well, provided that the slowest time-scale of the system is the
time to escape through a gate. In particular, the latter is much larger than
the expected time needed to escape from the potential well—this will hold if
ε → 0 with D fixed.

4. Probabilistic approach. In this section, we use probabilistic tools to ana-
lyze escape problems with either a uniformly switching boundary (SI) or switching
narrow gates (SII). For (SI), we determine how the switching boundary affects the
rate of escape from a radially symmetric potential well in the small diffusion limit.
For (SII), we give a simple probabilistic interpretation of (3.43) and show that it holds
under more general conditions.

4.1. MFPT for a randomly uniformly switching boundary (SI). We now
use probabilistic methods to analyze the problem, described in subsection 2.1, of
finding the MFPT to a randomly switching uniform boundary in the special case of
a radially symmetric potential, Φ(x) = Φ(r), in a hypersphere Ω = Sd for d ≥ 2. As
shown in subsection 2.1, this reduces to the 1D problem of a particle diffusing in an
interval [0, R] with effective potential, Φ̂, given by (2.27). Furthermore, it was shown
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Fig. 5. Left: Comparison of the probabilistic results of section 4.1 to numerical solutions of
the corresponding PDEs derived in section 2. The Φ′ > 0 curve verifies Proposition 4.1 by plotting
|w1(R)/( β

α
τ(R − δ)) − 1| as a function of the diffusion coefficient in the case when the potential is

Φ(r) = r20. The Φ′ < 0 curve verifies Proposition 4.2 by plotting |w1(R)/τ(0) − 1| as a function
of the diffusion coefficient in the case when Φ(r) = r6 − 10r4 + 10r2. In both cases, w1 is the
numerical solution to (2.12b), τ is given by (2.29), and α = β = R = 1. Right: Comparison of
Theorem 1 to Monte Carlo simulations. The vertical axis is the ratio of wsim. to wform., where wsim.

is the empirical MFPT to an open gate of 104 simulated trajectories, and wform. is the formula in
Theorem 1. In order to compute wform., the value of τ is the empirical MFPT to a (closed or open)
gate of 104 simulated trajectories, and the invariant distributions of each gate are chosen to be
identical so that π̄ is irrelevant. The horizontal axis is the size of each gate. Example 1 corresponds
to domain Ω = [−1, 1]2, potential Φ = x2 − y2, diffusion coefficient D = 1/4, initial condition
(0, 0), independent gates with rates α = .1, β = .2, and two gates centered at (±1, 0). Example 2
corresponds to domain Ω = [−1, 1]2, no potential, diffusion coefficient D = 1/4, initial condition
(0, 0), independent gates with rates α = β = 2/3, and four gates centered at (±1, 0) and (0,±1).
Example 3 corresponds to domain Ω = [−1, 1]2, potential Φ = −y2, diffusion coefficient D = 1/4,
initial condition (0, 0), independent gates with rates α = β = 3/4, and four gates centered at (±1, 0)
and (0,±1).

there that the MFPT to a switching boundary at R starting from r ∈ [0, R] is given
by τ(r) + w1(R), where τ(r) is the classical MFPT to a nonswitching boundary (see
(2.29)) and w1(R) is the MFPT to the switching boundary starting from R. Hence,
the problem reduces to finding w1(R).

We considered a similar class of problems in [6], where we showed that corrections
to the classical MFPT in the small diffusion limit depend on the gradient of the
potential in a neighborhood of the boundary. These results carry over to the case of a
radially symmetric potential well Φ(r), provided that Φ is either strictly increasing or
strictly decreasing in a neighborhood of R; see Figure 3. For in the limit D → 0, both
the potential Φ′(r) and the effective potential Φ̂′(r) have the same sign close to the
boundary. We give these results in two propositions at the end of this section. While
we omit the detailed proofs since they are analogous to those in [6], we briefly sketch
the argument. A similar argument will also be employed in section 4.2 for narrow
gates.

Suppose X(t) ∈ [0, R] satisfies (1.1) with the potential given by (2.27), and let
n(t) ∈ {0, 1} be an independent Markov process with transition rates given by (1.2).
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Define the following two stopping times:1

St := inf{s ≥ t : X(s) = R} and Tt := inf
{
s ≥ t : {X(s) = R} ∩ {n(s) = 0}

}
,

which are the first passage times to the boundary, and to the boundary in its open
state, respectively, starting at time t. We will use S and T to denote S0 and T0, and
Er to denote expectation conditioned on X(0) = r. Uniting notation from previous
sections,

Er[S] = τ(r) and Er[T ] = w(r).

Let 0 < δ < R, and define the stopping time

σ := inf{s ≥ 0 : |X(s) −X(0)| ≥ δ}.

If Φ′ > 0 on [R − δ, R], D is small, and the boundary is initially reflecting, then
the potential term will dominate and thus with high probability the particle will hit
R − δ before exiting. Further, once the particle hits R − δ, by the time it reaches
R again the state of the boundary will be roughly independent of the particle’s last
visit to R. Thus, we can think of the time required to exit as a series of independent
Bernoulli trials with probability of success equal to ρ0, where we must wait a time
ER[Sσ] between trials. Hence for small D,

w1(R) ≈ ρ0ER[Sσ]

∞∑
k=1

kρk1 = ρ0ER[Sσ]
ρ1

(ρ0)2
=

β

α
ER[Sσ].

Using the fact that ER[Sσ] = ER−σ [S] = τ(R − δ) gives the following correction to
the escape time in the presence of a switching boundary:

Proposition 4.1. If δ > 0 is such that Φ′ > 0 on [R− δ, R], then for r ∈ [0, R]

w(r) ∼ τ(r) + (β/α)τ(R − δ) as D → 0.

In Proposition 4.1, visits to the boundary are rare events and thus a correction to
the usual MFPT is needed. On the other hand, if Φ′(r) < 0 on [R− δ, R], then visits
to the boundary occur frequently once the particle is in a small neighborhood of the
boundary. Thus, the contribution of the switching boundary is negligible compared
to the escape time from a well.

Proposition 4.2. Assume rmin ∈ (0, R) is a unique minimum of Φ. If there
exists a δ > 0 such that Φ′ < 0 on [R− δ, R], then

w(rmin) ∼ τ(rmin) as D → 0.

In Figure 5, we compare the predictions of Propositions 4.1 and 4.2 with numerical
solutions of the corresponding PDEs derived in section 2.

4.2. MFPT for randomly switching gates (SII). Suppose X(t) ∈ Ω ⊂ R
d

satisfies (1.1) with reflecting boundary conditions. We suppose that the boundary
contains N distinguished points {x1, . . . ,xN}, and we denote the ε > 0 neighborhood
about each point by ∂Ωε

k, which we refer to as a “gate” (see (1.3)). Let n(t) ∈ {0, 1}N

1A stopping time T is a random variable whose value is interpreted as the time (finite or infinite)
at which a given stochastic process is terminated according to some stopping rule that depends on
current and past states. A classical example of a stopping time is a first passage time.
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be an irreducible Markov process whose kth component, nk(t) ∈ {0, 1}, controls the
state of the kth gate. We say that gate k is open or closed at time t if nk(t) is 0 or 1,
respectively. We assume n(t) is independent of X(t), but we do not assume that the
components of n(t) are independent of each other. It follows that (X(t),n(t))t≥0 is a
strong Markov process.

Define the following stopping times:

St := inf
1≤k≤N

{
inf{s ≥ 0 : X(t + s) ∈ ∂Ωε

k}
}
,

Tt := inf
1≤k≤N

{
inf

{
s ≥ 0 : {X(t + s) ∈ ∂Ωε

k} ∩ {nk(t + s) = 0}
}}

,

which are the first passage times after time t to a gate and an open gate, respectively.
Let T and S denote T0 and S0, respectively. For x ∈ Ω̄, let Px denote the probabil-
ity measure conditioned on X(0) = x and the process n(t) starting in its invariant
distribution, and let Ex denote expectation with respect to this probability measure.
Uniting notation from previous sections,

Ey[S] = τ(y) and Ey[T ] = w(y).

In this section, we use probabilistic tools to show that the relationship between E[T ]
and E[S] given in (3.43) holds in the presence of a potential.

Before proving this relationship in Theorem 1, we first give a simple probabilistic
argument for deriving it (see also section 4.1). For the sake of illustration, suppose
there is only one gate. We can approximate E[T ] by conditioning on the number of
visits to the gate before exiting. Supposing that the gate is small, visits to the gate
by the particle are rare events separated in time by approximately E[S]. Since E[S] is
large, the states of the gate upon successive visits by the particle are approximately
independent. If the gate is open the first time the particle visits the gate, then
E[T ] ≈ E[S], and the probability of this event is just the probability that the gate
is open, say 1 − p. If the particle makes two visits to the gate before exiting, then
E[T ] ≈ 2E[S], and this event has probability p(1 − p). Continuing in this manner,
we see that the exit time can be thought of as a series of independent Bernoulli trials
with probability of success equal to the probability that the gate is open, where we
must wait time E[S] between trials. Hence,

E[T ] ≈ E[S](1 − p)

∞∑
k=1

kpk−1 =
1

1 − p
E[S].

The remainder of this section formalizes this argument and generalizes it to N gates.
For each x ∈ Ω̃ := Ω̄ − {x1, . . . ,xN}, let π(x) ∈ R

N be the vector whose kth
component is the probability that a particle starting at x hits gate k before any other
gate. That is, define H ∈ {1, . . . , N} to be the random variable such that X(S) ∈ ∂Ωε

H

and define πk(x) := Px(H = k).
We prove the simple relationship between E[T ] and E[S] in the small gate limit

under the following assumptions. Some of the assumptions can be relaxed, but for
the sake of simplicity we do not give the most general hypotheses.
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Assumptions.
1. For each x ∈ Ω̃ and t ≥ 0, we have that Px(S < t) → 0 as ε → 0.
2. For each k ∈ {1, . . . , N}, we have that Exk

[T ] → ∞ as ε → 0.
3. For each x ∈ Ω̃ and η > 0, there exists a γ(x, η) > 0 such that if |x − y| <

γ(x, η), then for all k ∈ {1, . . . , N} and ε sufficiently small, we have that

|πk(x) − πk(y)| < η.

4. For each η > 0 and κ > 0, there exists an ε0(η, κ) > 0 such that if |x−xk| ≥ κ
and |y − xk| ≥ κ for all k ∈ {1, . . . , N} and ε < ε0(η, κ), then

|Ey[S]/Ex[S] − 1| < η.

5. For each η > 0, there exists an ε0(η) > 0 and B > 0 such that if ε < ε0(η),
k ∈ {1, . . . , N}, and y ∈ ∂Ωε

k, then for π̄ as in Lemma 4.3 we have

Ey[T ]∑N
j=1 π̄jExj [T ]

< B and

∣∣∣∣∣Ey[T ] − Exk
[T ]∑N

j=1 π̄jExj [T ]

∣∣∣∣∣ < η.

Assumption 1 ensures that the first passage time to a gate diverges in probability
in the small gate limit. This assumption was shown to hold in [18] in dimensions 2
and 3. Assumption 2 states that the MFPT to an open gate diverges in the small
gate limit when the initial condition is in the center of a gate. Though the particle
starts at a gate, if the gate is initially closed, then the particle will wander away,
and once it wanders away it takes a long time to find a gate again. Assumption 3
assumes a certain continuity of the splitting probability. Assumption 4 states that
the leading order term of the MFPT to a gate is independent of the initial condition.
The reasoning for this assumption is that the amount of time that it takes a particle
starting at x ∈ Ω̃ to reach a neighborhood of y ∈ Ω̃ is independent of ε, whereas
the time it takes the particle to reach a gate diverges as ε → 0. Hence, the particle
explores the whole domain before it finds a small gate. It is known that in two
dimensions and in the absence of a potential, the leading order term of the MFPT to
a gate is independent of the initial condition in the small gate limit (see section 3.3
and [15]). Finally, Assumption 5 asserts that the MFPTs to an open gate starting
from points on a gate should be close to each other.

The following lemma shows that Assumption 3 is enough to guarantee that the
splitting probability is independent of the initial position in the small gate limit.

Lemma 4.3. There exists an x independent vector π̄ ∈ R
N such that

π(x) → π̄ as ε → 0 for each x ∈ Ω̃.

Proof. Let x,y ∈ Ω̃, and η > 0. Let γ(x, η) be as in Assumption 3 above. Define
the first time that the particle is within γ(x, η) of x:

sx := inf{t ≥ 0 : |X(t) − x| < γ(x, η)}.

For j ∈ {1, . . . , N}, define the first time the particle hits ∂Ωε
j when it is open:

tj := inf{t ≥ 0 : {X(t) ∈ ∂Ωε
j} ∩ {nj(t) = 0}}.

Now, for k ∈ {1, . . . , N}, it is immediate that

|πk(y) − πk(x)| ≤ Py(tj < sx ∀ j) + |Py({tk ≤ tj ∀ j} ∩ {tj ≥ sx ∀ j}) − πk(x)|.
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For each j ∈ {1, . . . , N}, define the stopping time

t̂j := inf{t ≥ 0 : {X(sx + t) ∈ ∂Ωε
j} ∩ {nj(sx + t) = 0}}.

Now, observe that

Py({tk ≤ tj ∀ j} ∩ {tj ≥ sx ∀ j}) = Py({t̂k ≤ t̂j ∀ j} ∩ {tj ≥ sx ∀ j}).

Hence,

|Py(tk ≤ tj ∀ j ∩ tj ≥ sx ∀ j) − πk(x)| ≤ |Py(t̂k ≤ t̂j ∀ j) − πk(x)| +
∑
j

Py(tj < sx).

By the strong Markov property2 and the choice of γ(x, η), we have that

|Py(t̂k ≤ t̂j ∀ j) − πk(x)| ≤ sup{|πk(z) − πk(x)| : |z− x| ≤ γ(x, η)} < η

for ε sufficiently small. Hence,

|πk(y) − πk(x)| ≤ η + 2
∑
j

Py(tj < sx)

for ε sufficiently small. Next, observe that for t ≥ 0 and j ∈ {1, . . . , N} we have

Py(tj < sx) ≤ Py(tj ≤ t) + Py(sx > t).

Take t sufficiently large to make Py(sx > t) < η. Then, for this fixed large t, observe
that Py(tj ≤ t) ≤ Py(S ≤ t). By Assumption 1, we can take ε small to make

Py(S ≤ t) < η. Since x,y ∈ Ω̃ and η > 0 were arbitrary, the proof is complete.
The following theorem uses probabilistic tools to obtain (3.43) in a general domain

Ω ⊂ R
d in dimension d ≥ 2, with a potential, and gates that may be correlated.

Theorem 1. Let π̄ ∈ R
N be as in Lemma 4.3, and let pk be the stationary

probability that nk(t) = 1. If x ∈ Ω̃, then

w(x) ∼ τ(x)

1 −
∑

k π̄kpk
as ε → 0.

In Figure 5, we compare the conclusion of this theorem with Monte Carlo simu-
lations.

Proof. For δ ≥ ε > 0, define the stopping time σ := inf{t ≥ 0 : |X(t)−X(0)| ≥ δ}
and the event A := {σ < T }. We then have that

Exk
[T ] = Exk

[T 1Ac ] + Exk
[σ1A] + Exk

[Sσ1A] + Exk
[Tσ+Sσ1A].(4.1)

Further, by Assumption 2, we have that(
Exk

[T 1Ac ] + Exk
[σ1A]

)
/Exk

[T ] → 0 as ε → 0,

2Recall that a stochastic process has the Markov property if the conditional probability distribu-
tion of future states of the process (conditional on both past and present states) depends only upon
the present state, not on the sequence of events that preceded it. The term strong Markov property
is similar to the Markov property, except that “present” is defined in terms of a stopping time.
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since Exk
[T 1Ac ] + Exk

[σ1A] ≤ Exk
[σ] is bounded in ε. Thus, applying Lemmas A.1,

A.2, and A.3 to (4.1), we obtain, for x ∈ Ω̃, that

Exk
[T ] ∼ pkEx[S] + pk

∑
j

π̄jExj [T ] as ε → 0.(4.2)

If we let T ∈ R
N denote the vector with kth component equal to Exk

[T ], then writing
(4.2) in vector notation, we have that T ∼ (Ex[S]+ π̄T

T)p as ε → 0, where superscript
T denotes the transpose. It is straightforward to check that the norm of pπ̄T is strictly
less than 1, and thus

T ∼ (I − pπ̄T )−1pEx[S] =

( ∞∑
m=0

(pπ̄T )m
)
pEx[S].(4.3)

Now, it’s immediate that for each x ∈ Ω̃, we have that

Ex[T ] = Ex[S] + Ex[TS ].(4.4)

A similar argument to the one used in Lemma A.2 yields

Ex[TS ] ∼
∑
j

π̄jExj [T ] = π̄T
T as ε → 0.(4.5)

Hence, by combining (4.3), (4.4), (4.5), we have that

Ex[T ] ∼
(

1 + π̄T
∞∑

m=0

(pπ̄T )mp

)
Ex[S] as ε → 0.

Recalling the formula for the sum of a geometric series completes the proof.

5. Discussion. Motivated by a number of transport mechanisms in biological
cells, in this paper we studied diffusion in a potential with boundaries that randomly
switch between absorbing and reflecting states. We analyzed the escape time to the
boundary in the case that the entire boundary switches state (SI), and the escape
time to one of N small pieces of the boundary that each switch state (SII). For (SI),
we assumed a radially symmetric domain and potential and derived corrections to the
classical escape time to a static boundary. This extended our previous work on exit
statistics for a particle diffusing with a potential in a finite interval with randomly
switching boundaries [6]. For (SII), we significantly generalized a result appearing
in [1] and [16]. Under mild assumptions on certain asymptotic statistics, we used
probabilistic methods to prove that this result holds in the presence of a potential,
and we generalized it to the case of N gates that are arbitrarily correlated in their
opening and closing. Further, we gave an intuitive probabilistic interpretation to this
result. Notably, for both (SI) and (SII), we arrived at our results by combining tools
from PDEs and probability theory. Such an approach is uncommon in the study of
escape problems. Coupling these disparate methods provided a unique perspective,
and we believe that our two-pronged approach can serve as a prototype for future
studies.

In particular, one future goal related to the present work is to extend the classical
Smoluchowski theory of diffusion-limited reaction rates to the case of a stochastically-
gated target. While this stochastically-gated problem was first studied by Szabo et



ESCAPE FROM RANDOMLY SWITCHING BOUNDARIES 1443

al. [20] for unbounded domains, the case of bounded domains remains unexplored.
Recently, Straube, Ward, and Falcke [19] calculated the diffusion-limited reaction rate
in a bounded domain with a static target. One would like to see how their results
are altered in the case of a stochastically-gated target. This is a natural extension of
the present work for two reasons. First, while reaction rates are sometimes defined as
inverse MFPTs, the Smoluchowski theory that defines reaction rates via flux through
a boundary is an alternative and perhaps more common formulation. Second, the
flux through a boundary is related to the probability density function of the FPT to
a target. Thus, this future project would extend the present work on means of FPTs
to distributions of FPTs.

Another possible extension of our work is to consider multiple diffusing particles.
It would be interesting to analyze the difference between having the particles switch
states and having the boundaries switch states. In the latter case, even though the
particles are diffusing independently, they are correlated because they are all diffusing
in the same random environment [5]. This subtlety has been studied before [3, 14, 22],
and we hope that coupling PDE and probability techniques can give further insight
into this problem.

Appendix. Under the assumptions of section 4.2, we now prove the lemmas used
in the proof of Theorem 1.

Lemma A.1. For each k ∈ {1, . . . , N} we have that

Pxk
(A) → pk := P(nk(0) = 1) as ε → 0.

Proof. Define the stopping time sk := inf{t ≥ 0 : nk(t) = 0}. For t > 0, we have

Pxk
(Ac |nk(0) = 1) ≤ Pxk

(sk < σ|nk(0) = 1) ≤ Pxk
(t ≤ σ) + P(sk < t|nk(0) = 1).

We can make the second term arbitrarily small by taking t small, and then take δ > ε
small to make the first term arbitrarily small.

Lemma A.2. For each k ∈ {1, . . . , N} we have that

Exk
[Tσ+Sσ1A] ∼ pk

N∑
j=1

π̄jExj [T ] as ε → 0.

Proof. Let {Ft}t≥0 be the filtration generated by the strong Markov process
{(X(t),n(t))}t≥0. For x ∈ Ω̄ and m ∈ {0, 1}N , let Px,m denote the probability
measure conditioned on X(0) = x and n(t) = m, and let Ex,m denote expectation
with respect to this probability measure. Observe that by the tower property of
conditional expectation and the strong Markov property, we have that∣∣∣∣Exk

[Tσ+Sσ 1A] − Pxk
(A)

∑
j

π̄jExj [T ]

∣∣∣∣ ≤ Exk

∣∣∣∣EX(σ),n(σ)[TS ] −
∑
j

π̄jExj [T ]

∣∣∣∣.
Let z ∈ Ω̃ and m ∈ {0, 1}N be arbitrary. Then∣∣∣∣Ez,m[TS ] −

∑
j

π̄jExj [T ]

∣∣∣∣ ≤ ∑
j

∣∣Ez,m[1H=j(Ez,m[TS |FS ] − Exj [T ])]
∣∣

+
∑
j

∣∣(Pz,m(H = j) − π̄j)Exj [T ]]
∣∣.
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Let Σ1 and Σ2 denote, respectively, the two sums on the right-hand side of the above
equation. Since X(σ) ∈ Ω̃ almost surely if X(0) = xk, and since Pxk

(A) → pk > 0 by
Lemma A.1, by the bounded convergence theorem it is enough to show that

(Σ1 + Σ2)

(∑
j

π̄jExj [T ]

)−1

converges to 0 almost surely as ε → 0, and is bounded independent of z and m for ε
sufficiently small. This bound and convergence for the Σ2 term follow from Lemma 4.3
and Assumption 5.

To bound Σ1, observe that by the strong Markov property

∣∣Ez,m[1H=j(Ez,m[TS |FS ] − Exj [T ])]
∣∣ =

∣∣Ez,m[1H=j(EX(S),n(S)[T ] − Exj [T ])]
∣∣(A.1)

≤
∣∣Ez,m[1H=j(EX(S),n(S)[T ] − EX(S)[T ])]

∣∣ +
∣∣Ez,m[1H=j(EX(S)[T ] − Exj [T ])]

∣∣.
It follows immediately from Assumption 5 that

∣∣Ez,m[1H=j(EX(S)[T ] − Exj [T ])]
∣∣(∑

m

π̄mExm [T ]

)−1

converges to 0 almost surely as ε → 0, and is bounded independent of z and m for ε
sufficiently small.

Next, to bound the first term on the bound in (A.1), let us enumerate the elements
of the state space of n(t) by {ai}i∈I for some finite index set I. Then, if ν ∈

⋃
i{ai}

is distributed according to the invariant measure of n(t), then∣∣Ez,m[1H=j(EX(S),n(S)[T ] − EX(S)[T ])]
∣∣

=

∣∣∣∣Ez,m

[
1H=j

∑
i∈I

(
Pz,m(n(S) = ai) − P(ν = ai)

)
EX(S),ai

[T ]

]∣∣∣∣.
Since n(t) is irreducible, S → ∞ in probability as ε → 0 by Assumption 1, and since
S is independent of n(t), we have that Pz,m(n(S) = ai) → P(ν = ai) as ε → 0 for
each i ∈ I. Further, it follows from Assumption 5 that there exists a B such that if
j ∈ {1, . . . , N}, then for all y ∈ ∂Ωε

j , i ∈ I, and ε sufficiently small, we have that

Ey,ai [T ]

(∑
j

π̄jExj [T ]

)−1

≤ B.(A.2)

The desired bound and convergence of Σ1 follows.
Lemma A.3. If x ∈ Ω̃, then Exk

[Sσ1A] ∼ pkEx[S] as ε → 0.
Proof. By the tower property of conditional expectation, the strong Markov

property, and the fact that the distribution of S does not depend on n(t), we have
that

Exk
[Sσ1A] = Exk

[1AExk
[Sσ|Fσ]] = Exk

[1AEX(σ)[S]].

Hence, ∣∣Exk
[Sσ1A] − Pxk

(A)Ex[S]
∣∣

pkEx[S]
≤ 1

pk
Exk

∣∣∣EX(σ)[S]

Ex[S]
− 1

∣∣∣.(A.3)
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Since Pxk
(A) → pk > 0 by Lemma A.1, it is enough to show that the bound in (A.3)

goes to 0 as ε → 0. Define κ := infk∈{1,...,N} |x − xk|. Choosing δ > ε sufficiently
small ensures that |X(σ) − xk| > κ almost surely for all k ∈ {1, . . . , N}. The desired
convergence follows from Assumption 4 and the bounded convergence theorem.
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